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This paper presents a new class of filters that can meet biomedical signal processing needs. 
The paper is written in a technical note style, therefore, the proposed filters are not discussed 
with respect to a specific problem appearing in processing of a particular biosignal. The 
class of filters presented in this note should be treated as a new effective tool which can be 
applied to many cases of biomedical signals, especially when the processing time is very 
important. Nevertheless, a simple example of biomedical signal filtering is presented. This 
paper presents a new concept of continuous-time Butterworth filters whose parameters 
are varied in time. Thanks to the variation of the filter parameters, the time-varying filter 
response is considerably faster in comparison with the traditional time-invariant filters. 
Therefore, we can measure and register a lot of details in the initial stage of signal duration, 
which is not possible in the case of traditional time-invariant filters due to their long-lasting 
transients. Results verifying the effectiveness of the proposed filters are presented and 
compared to the traditional time-invariant filter structures.
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time-varying systems

1. Introduction

In [1] Robertson et al. present some investigations over traditional Butterworth and 
critically damped filters. The review of traditional filters, which has been carried 
out in this paper is very useful. However, the advantages and disadvantages of these 
filters are well known, and their description was reported by Chen [2], Schaumann 
et al. [3], and Su [4]. Nowadays, there is a need for looking for a new filter structure 
which will be able to work as fast as possible. The most common filter responses are 
the Butterworth, Chebyshev, elliptic, and Bessel-Thomson types. 
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 The Butterworth filters are often chosen for smoothing biomedical data because 
their gain response is maximally flat in the passband, and the roll-off rate is at ad-
equate level. In the time domain, the Butterworth low-pass filters are characterized 
by undesirable overshoots and quite long transients. The magnitude response of the 
low-pass Butterworth filter can be written as follows:
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where n is the filter order, h0 is the DC gain (gain at zero frequency), and ωc is the 
3 dB limit frequency.
 In many cases of biomedical signal analysis, there is a need for a data filtering. 
One of the main aims of the filtering is to smooth the data as fast as possible. This 
requirement is related to improvement of the filter properties in the time domain. The 
problem of improving the transient performance has been considered by Kaszynski 
et al. [5] to successfully reduce the time of processing of the brain average-evoked 
potentials.
 The commonly used smoothing filters are, in many cases, useless due to their 
long-lasting transients and undesirable overshoots. For traditional time-invariant 
filters there are only small possibilities of transient reduction, since the filter pa-
rameters are calculated on the basis of the assumed approximation method. This 
fact guarantees that the frequency requirements are satisfied without taking into 
consideration the characteristic of the transient state. If the requirements on the 
frequency characteristic are imposed, we can slightly influence the shortening of 
the transient state duration of the n-th order filter by choosing different approxi-
mation methods. The uncertainty principle states that it is not possible to achieve 
a shorter rise time of a low-pass filter output signal when the filter passband is 
constant. However, one can obtain significant changes of the transient state dura-
tion by variation of the filter passband. This procedure is related to the change of 
the value of filter coefficients. Such a kind of technique has been used in success 
by Piskorowski et al. [6] for elimination of undesirable effects of the group delay 
compensation. The theory of linear time-varying continuous-time systems is well 
established and was widely described by Claasen et al. [7], Margrave [8], and 
Zadeh [9,10].
 In this note, a new concept of the Butterworth filters whose parameters are varied 
in time is presented. Thanks to variation of the filter parameters, the time-varying 
filter response is considerably faster and free from overshoots in comparison with 
the traditional time-invariant filters. The outline of the paper is as follows.
 In Section 2, the mathematical formulation of the time-varying low-pass filter 
is presented. Section 3 then presents the results of simulations carried out with the 
aid of Matlab-Simulink software. The conclusions are presented in Section 4.
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2. Mathematical Formulation of Time-varying Filter

Dynamic properties of the second order low-pass filter (or filter of constant compo-
nent) are described by the damping ratio ξ and the natural frequency ωn. The transfer 
function of this filter can be written as follows:
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It is well known that the larger value of the natural frequency ωn, the shorter transient 
of the filter. On the other hand, the larger value of the damping ratio ξ is, the smaller 
overshoot of the filter is. By changing these parameters in time, we can improve the 
dynamics of the filter and obtain significant reduction of the transient duration. This 
situation leads to a time-varying filter design.
 The time-varying filter design is the result of modeling of the differential equation 
which describes the filter in the time domain. For the purpose of the filter response 
improvement it was assumed that dynamic parameters of the filter will be varied in 
time. Therefore, the model of the filter has the following form:
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where x(t) and y(t) are the filter input and output, respectively. Moreover, ωn(t) is a 
function of the natural frequency, and ξ (t) is a function of the damping ratio.
 In order to shorten the transient state of the filter, we have assumed (on the basis 
of computer simulations and previous investigations reported by Piskorowski et al. 
[6]) the functions of the filter parameters in the following form:
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where ωn  and ξ  are the natural frequency and the damping ratio, which come from 
the Butterworth approximation. The coefficients dω and dξ are the variation ranges 
of the functions ωn (t) and ξ (t). These parameters are described by the following 
ratios:

   d dn

n
ω ξ

ω
ω

ξ
ξ

= =
( )

,
( )0 0 . (6)



30 J. Piskorowski

The choice of the form of the functions (4) and (5) was connected with the easi-
ness of the generation in the analogue technique. The function h(t) in (4) and (5) 
describes the step response of the second order supportive system Hs(s) which has 
the following form:
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Therefore the step response h(t) of Hs(s) can be written as follows:
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where �−1
 is the inverse Laplace transform, and ωnf  and ξf  are the natural frequency 

and the damping ratio of the second order supportive system.
 The functions ωn(t) and ξ(t) should not possess oscillations in their run, so ξf = 0.9 
was established. For ξf  < 1, relation (8) can be written in the following form:
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With respect to the functions (4) and (5), ξf can be called as the oscillation factor, 
and ωnf as the variation rate of the functions ωn(t) and ξ(t).
 The main assumption imposed on the functions ωn(t) and ξ(t) is the necessity of 
settling during the transient state of the original time-invariant filter. This condition 
can be written as

   ∀ = ± ∀ = ±> >t t n n t ts s
t t

α α
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where tsα is the settling time (with assumed accuracy α = 5%) of the original time-
invariant filter.
 The function ωn(t) starts from a larger value than ωn , which means that this 
function decreases (dω > 1) in the variation interval [0, tsα]. Such a run of the func-
tion ωn(t) shifts the cutoff frequency to a larger value in the initial phase of the filter 
work. The function ξ(t) also starts from a larger value than ξ , which means that this 
function decreases (dξ > 1) in the variation interval. Such a run of the function ξ(t) 
causes stronger damping of the input signal in the initial phase of the filter work, 
and the suppression of undesirable overshoot in the step response.
 Introduction of the time-varying parameters requires an examination of the 
stability of the systems with element containing varying parameters. Kaszynski [11] 



31A New Concept of Filters for Biomedical Data...

presents a proof of the stability, which is based on the second Lyapunov method. 
The analysis of this proof leads to the following stability conditions of the second 
order time-varying system

   ωn t( ) > 0  (11)

   ξ ( )t > 0  (12)
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It follows from the relation (13) that for the second order system to be stable it suf-
fices that the rate of changes of the natural frequency is bounded by the product of 
the functions ωn(t) and ξ(t). According to (11) and (12), the functions ωn(t) and ξ(t), 
have to be positive.

Fig. 1. Detailed model of the second order time-varying Butterworth filter
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 In this paper, only the low-pass filter type has been considered. However, it is 
easy to transform the low-pass filter to the other types of filters (i.e. high-pass, band-
pass, and band-stop) using well known transformations [2–4]. After transforming, 
the filter should be decomposed to the first and the second order sections. Then, the 
natural frequencies and the damping ratios of these sections should be derived and 
varied according to the rules presented in this paper.
 Figure 1 presents a detailed model of the second order time-varying Butterworth 
filter which has been discussed in this paper. A classical implementation of the time-
varying approach described in this paper requires use of multipliers, adders, and 
two additional integrators. As one can notice, the complexity of the overall system 
underwent a significant increase. However, in situations, in which the transient should 
be as short as possible this complexity increase may be profitable.

3. Results of Simulations

In order to illustrate, how the time-varying principle influences the dynamics of 
a low-pass filter, the second order continuous-time Butterworth filter with cutoff 
frequency ωc = 1 rad/s has been used. It is worth to add in this place that one of 
the simplest filters has been chosen for simulations in respect to the filter order and 
cutoff frequency. However, the time-varying principle which has been described in 
Section 2 can be applied for any filter order and cutoff frequency.

The transfer function of the above mentioned filter has the following form:
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3.1. Overshoot Elimination

If the main aim of the transient improvement is to minimize the filter overshoot, the 
damping ratio ξ should be varied in time. It is well known that the larger damping 
ratio, the smaller overshoot. Using this principle, it is clear that the damping ratio 
should be larger in the initial phase of the filter work, so as to eliminate the overshoot 
from the filter response. For the second order Butterworth filter the variation range 
of the damping ratio function has been chosen as follows:

   dξ
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This values states that in the initial phase the damping ratio is 1.5 times larger than 
the one which follows from Butterworth approximation. The function ξ(t) is shown 
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in Fig. 2 and the step responses of the traditional and the time-varying filter are 
presented in Fig. 4. It is clearly seen that the response of the time-varying filter is 
free from overshoots.

Fig. 2. Function ξ(t)

3.2. Transient Reduction

If the main aim of the transient improvement is to reduce the transient duration, the 
natural frequency ωn should be varied in time. It is well known that the larger natu-
ral frequency, the shorter transient of the filter. Using this principle, it is clear that 
the natural frequency should be larger in the initial phase of the filter work. For the 
second order Butterworth filter the variation range of the natural frequency function 
has been chosen as follows:
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This values states that in the initial phase the natural frequency is 5 times larger 
than the one which follows from Butterworth approximation. The function ωn(t) is 
shown in Fig. 3 and the step responses of the traditional and the time-varying filter 
are presented in Fig. 4. It is clearly seen that the transient of the time-varying filter 
underwent a significant shortening.

3.3. Transient Reduction and Overshoot Elimination

If the aim of the transient improvement is to reduce the transient duration and si-
multaneously eliminate the overshoot from the filter response, both damping ratio 
and natural frequency should be varied in time according to the rules presented in 
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the previous subsections. The results of the transient reduction and the overshoot 
minimization are presented in Fig. 4.

Fig. 3. Function ωn(t)

Fig. 4. Results of transient reduction and overshoot minimization

3.4. Example of Application

Time-varying continuous-time filters whose concept has been presented in this paper 
can be used for biomedical signal processing needs in twofold manner. Firstly, this 
kind of filters can be used when a filtering system is entirely analog. In such a system 
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the proposed time-varying filter acts as the main filter which suppresses undesirable 
components of a signal which is to be processed.
 Secondly, the time-varying continuous-time filter can be used as an anti-aliasing 
filter. Signal processing systems that appear to be entirely digital often contain one or 
more analog continuous-time filters. Anti-aliasing filters connect the real-world analog 
signals to the digital signal processor and provide band limiting before the signals 
can be sampled for further processing with sampled-data or digital techniques.
 In this note, an example of biomedical signal processing in which the analogue 
time-varying filter acts as the main filtering system will be presented. Fig. 5(a) 
presents a sample motor unit action potential (MUAP) which has been distorted dur-
ing recording. As one can notice, the resultant signal is the combination of the useful 
signal and an additive noise which should be suppressed. Figs. 5(b) and 6 present 
the result of filtering the using traditional time-invariant second order Butterworth 
filter with cutoff frequency ωc = 10 Hz and its time-varying equivalent. It is easy to 
notice, especially in Fig. 6 which shows the initial stage of the signal, that the time-
varying filter is considerably faster than the traditional time-invariant one.

Fig. 5. (a) Motor unit action potential (MUAP) distorted by additive noise. (b) Motor unit action
potential (MUAP) after filtering
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 Therefore, using time-varying filters, we can measure and register a lot of details 
in the initial stage of signal duration, which is not possible in the case of traditional 
time-invariant filters due to their long-lasting transients.

4. Conclusions

As it has been proven, the introduction of time-varying coefficients to the low-pass 
Butterworth filter yields good results. By varying the filter parameters, it is possible 
to reduce the filter transient and eliminate the overshoot from the filter response. 
This fact may have a very important meaning in the case of the processing of many 
kinds of biomedical data. The behaviour of the time-varying filters has been presented 
with the aid of the step responses, similarly like in the technical note published by 
Robertson et al. [1]. Besides, a simple example of application to biomedical data 
has been also presented.
 Summarizing, in the paper, a new concept of Butterworth filters whose parameters 
are varied in time has been presented. Thanks to variation of the filter parameters, 
the time-varying filter response is considerably faster and free from overshoots in 
comparison with the traditional time-invariant filters. Therefore, one can measure and 
register a lot of details in the initial stage of signals duration, which is not possible 
in traditional time-invariant filters due to their long-lasting transients. It seems that 
further examinations of time-varying filters when applied to the biomedical signal 
processing are needed.

Fig. 6. Initial stage of the filtered MUAP signal. Time-invariant and time-varying filter response
comparison
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 The filter configuration presented in this paper can be implemented with the 
aid of the dynamic translinear technique which has been described by Mulder et 
al. [12] and Diepstraten [13]. By using the dynamic translinear principle, it is pos-
sible to implement linear and nonlinear differential equations, using transistors and 
capacitors only. Dynamic translinear circuits are excellently tunable across a wide 
range of several parameters, such as cut-off frequency, quality factor and gain, which 
increases their designability and makes them attractive to be used as standard cells or 
programmable building blocks. In fact, the dynamic translinear principle facilitates 
a direct mapping of any function, described by differential equations, onto silicon.
 At the end of this paper, it is worth to add that the proposed filter structures can 
be easily transformed to digital filters. For that purpose, the continuous-time integra-
tors from Fig. 1 should be transformed to their digital equivalents with the aid of the 
well known bilinear transform.
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