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Cardiotocographic monitoring based on automated analysis of the fetal heart rate (FHR) 
signal is widely used for fetal assessment. However, the conclusion generation system is 
still needed to improve the abnormal fetal outcome prediction. Classification of the signals 
according to the predicted fetal outcome by means of neural networks is presented in this 
paper. Multi-layer perceptron neural networks were learned through seventeen time-domain 
signal features extracted during computerized analysis of 749 traces from 103 patients. 
The analysis included estimation of the FHR baseline, detection of acceleration and de-
celeration patterns as well as measurement of the instantaneous FHR variability. All the 
traces were retrospectively verified by the real fetal outcome defined by newborn delivery 
data. Influence of numerical and categorical representation of the input signal features, 
different data sets during learning, and gestational age as additional information, were 
investigated. We achieved the best sensitivity and specificity for the neural networks fed 
with numerical input variables together with additional information on the gestational age 
in the categorical form.
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1. Introduction

Cardiotocographic (CTG) monitoring is a routine procedure for assessment of the 
fetal state during pregnancy and labour. It relies upon non-invasive recording of Fetal 
Heart Rate (FHR), maternal Uterine Contractions (UC) and fetal movement activity. 
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Early detection of the fetus at risk helps to avoid dangerous situations which could 
be more difficult or even impossible to manage in the newborn. The CTG signals 
undergo analysis aimed at extraction and quantitative description of the features es-
sential for classification of the traces as corresponding to normal or abnormal fetal 
state. When classifying the FHR signals, the baseline, variability and the presence of 
acceleration/deceleration patterns have to be assessed. The resting level of the fetal 
heart rate (the basal FHR) between 120 and 160 bpm is the fundamental pattern. 
 Accelerations of the FHR as temporary increases of fetal heart rate in response to 
fetal movements are a sign of fetal central nervous system alertness and fetal well-
being. The temporary decreases of the FHR called decelerations usually reflect such 
risky events as compression of the umbilical cord.
 At present, quantitative analysis of CTG records is performed with a help 
of computerized fetal monitoring system. Its tasks are: analysis of data incom-
ing from bedside monitors, dynamic presentation of signals along with analysis 
results, as well as storing and printing the data [1]. The system ensures easy and 
fast access to archived records and convenient following up their longitudinal 
changes. Automated analysis of the cardiotocographic signals is able to extract 
all the features that are hidden for visual evaluation done by clinicians. It is very 
important especially for the determination of the beat-to-beat FHR variability, which 
is crucial for the fetal state assessment. Additionally, stable computer algorithms 
and threshold values significantly increase repeatability and objectivity of signals 
analysis. However, fetal assessment is still done by clinicians who finally classify 
the trace features as relating to normal or abnormal fetal outcome. Such predic-
tion of the fetal outcome during pregnancy is possible, because in perinatology it 
is assumed that the fetal state can not change rapidly. In other words, a newborn 
whose state just after delivery has been evaluated as normal had to have developed 
properly, excluding of course acute complications during labour. It was found that 
visual interpretation of CTG traces is characterized by low inter- and intraobserver 
agreement, which may lead to erroneous diagnosis. The benefit of fetal monitoring 
is that the reassuring CTG features are usually confirmed by normal fetal outcome. 
While the abnormal signal patterns can relate both to abnormal and normal real 
fetal state, and false assessment of the abnormal fetal state very often causes un-
necessary operative interventions.
 Since the cardiotocography is a primary method for fetal state assessment, 
looking for automated methods for efficient conclusion generation is extremely 
needed. Possibility of handling of complex data sets, capability of learning and 
generalization, and distributed pattern recognition process, make a use of neural 
networks particularly attractive for medical application. In obstetrics it concerns 
mainly fetal outcome assessment [2], prediction of preterm birth [3], low birth 
weight [4] or even newborn gender [5]. In the learning process of the neural 
networks, aimed at cardiotocographic traces classification, a clinical experts’ 
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knowledge is applied, which is based on evaluation of selected parameters from the 
newborn description [6]. The input set for automated classifier was usually formed 
by time and/or frequency domain parameters from computerized analysis of the 
FHR signal [7–9]. Sometimes these parameters were converted into new artificial 
features by means of grammatical evolution [10]. The additional features were 
based on discrete wavelet transform [11] or approximate entropy [12]. Different 
combinations were used as input data and usually the initial number of inputs was 
reduced to ensure better classification performance. The raw FHR and UC values 
averaged over two-minute intervals were used in [13], where the neural network 
was trained to classify CTG into three categories: physiological, suspicious and 
pathological, the neural network reached the same pathology prediction as the 
expert – in 69.7% of cases. More often, the raw signals were applied when the 
neural network task was to extract and classify clinically important features: the 
FHR baseline, acceleration and deceleration patterns [14–16]. Both raw signals 
and seventeen automatically extracted features were the inputs of the neural net-
works trained to interpret the CTG records using clinical experts and the non-stress 
test rules [17]. Generally, the Multi-Layer Perceptron (MLP) was applied more 
often than other classifiers tested: classical statistical methods (linear, quadratic 
and logistic discriminant analysis) [12], Neuro-Fuzzy Inference System [18, 19], 
Artificial Neural Network Based on Logical Interpretation of fuzzy if-then Rules 
[20] or self-organizing (Kohonen) maps [21]. Retrospective verification of CTG 
records classification by means of fetal outcome was applied only in [22].
 Concluding, usually the automated approach provided better results than the 
human experts. However, particular emphasize was placed on the automated clas-
sification method of the CTG traces itself, whereas the different aspects of input data 
applied during the learning process should have been considered as well. First of all, 
the fetal trace classification is based on automatically extracted signal features. It 
means that the quality of the algorithms applied in quantitative analysis of monitoring 
records is extremely crucial for the prediction of the fetal outcome as being normal 
or abnormal. Thus, in this work we focused on the CTG signal features extraction 
and testing of different approaches to input data preprocessing. We investigated how 
two possible representations of the input variables – numerical versus categorical, 
the different structures of the learning data sets as well as additional information on 
a fetal gestational age (at which the fetal signals were registered) affect the quality 
of the CTG signals classification. In the proposed work, the learning process was ac-
complished with the true fetal outcome evaluated on the newborn data by the experts 
just after delivery. Several experiments were performed using multi-layer perceptron 
neural networks as the most representative since they have been most often used. 
They were aimed to show the directions in which the performance measures – the 
prognostic indices – can be expected to change. Therefore, the obtained results do 
not represent their maximum values. 
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2. Material and Methods

2.1. Data Collection

The data were obtained from the archive of computerized fetal surveillance system 
MONAKO [1]. They consisted of a set of parameters of quantitative description of the 
CTG signals in time domain together with the associated medical history referring to 
the patients and their newborns. The CTG signals were recorded using HP series 50 
monitors. The FHR was acquired via a pulsed Doppler ultrasound transducer placed 
on the maternal abdomen. Uterine contractions were recorded via a strain gauge 
transducer. The monitor provided every 250 ms the consecutive digital measurements 
of both signals, the resolution was 0.25 bpm for the FHR and 0.5 of relative unit for 
the uterine activity. We rejected records from patients with incomplete delivery and 
newborn data forms, as well as like in [23], those with fetal malformations diagnosed 
before or after delivery, multiple pregnancy and acute complications during labour 
(like difficult fetal extractions or anaesthesia complications). Finally, we obtained 
749 records from 103 patients, where 210 (28%) records related to abnormal fetal 
outcome. The number of traces recorded from particular patient varied from one to 
ten, and they were acquired between 28th and 42nd week of gestation. 

2.2. Features Extraction

Fetal heart activity is described by changes of the cardiac intervals Ti determined 
between two consecutive heart beats or using the instantaneous fetal heart rate values 
FHRi, which is an extrapolation of the interval Ti into one-minute period:

   FHR
T miliseconds

beats per minutei
i

= 60000
[ ]

[ ]  (1)

Both the representations are used interchangeably during computerized analysis. Signifi-
cant FHR variability in time (Fig. 1) is caused by complex heartbeat regulation system. 
There are a number of different variability patterns which can be grouped into:
 – changes of the basal fetal heart rate called baseline that comprise very slow and 
usually long-lasting decrease or increase of the heart rate, which when exceeding the 
established thresholds, are defined as bradycardia and tachycardia respectively;
 – changes of the fetal heart rate in certain direction, e.g. transitory increases 
above the baseline defined as accelerations of the FHR, as well as transient slowing 
of the FHR in relation to the baseline called decelerations;
 – short-lasting changes of the FHR also called instantaneous variability. There 
are two types of these variability: short-term variability with changes of consecu-
tive Ti intervals duration (called beat-to-beat variability), and long-term variability 
with periodical changes of beat-to-beat variability concerning both direction and 
magnitude (called oscillations of FHR).



33Analysis of Extracted Cardiotocographic...

2.2.1. Preprocessing

In computerized signal analysis the instantaneous FHR variability is described by 
parameters which require the signal to be in a form of time event series – consecutive 
Ti intervals, and/or as evenly sampled signal. The bedside monitors provide the FHR 
measurements every 250 ms, which prevents from loss of short cardiac intervals. 

Fig. 1. Cardiotocographic signals. Two screens with cardiotocographic signals: A – accelerative and 
B – decelerative. The horizontal bars above the waveforms identify the recognized trace patterns. 
 Additional window presents thirteen signal parameters: ACC, DEC and UC state the number of patterns 
recognized in segment, the OSC_Sil, OSC_Salt  – percentage of duration of a given oscillation episode 
in the segment duration and the rest ones represent mean values of the given feature in the segment

(see Table 1)
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However, long intervals can be represented by up to five values. Therefore, the first 
step of the analysis is extraction of the series of the consecutive cardiac intervals. 
Simple solution of this problem is to replace samples of the same value with one 
valid to mark others as duplicated ones [24]. To improve this approach, the authors 
developed a novel algorithm for identification and removing the duplicated samples 
[25]. It relies on a formula defining the range of the number of real intervals x repre-
sented by a series of n samples of the same value Ti and occurring every t = 250 ms 
period:

   ( ) ( )n t T T

T
x

n t T T

T
i i

i

i i

i

− ⋅ + − < < + ⋅ + −+ +1 11 1  (2)

If (2) have only one solution (as an integer), it is the exact number of intervals. In 
case of two solutions obtained, the probability criteria are used to choose the one, 
with possible error of ± 1 interval for each particular series of duplicated samples. 
Because such doubtful cases are very rare accuracy of the extraction of the event 
series is very high.

2.2.2. Artefacts Removal

In commonly used criteria [26] to control the instantaneous changes of Ti, too wide 
range of acceptability is applied, mainly for correct recognition of the slopes of 
acceleration and deceleration pattern. The criteria are efficient enough for signal 
displaying or printing, but in many cases the values assumed as correct distort the 
analysis of beat-to-beat variability. Therefore, we proposed more precise criteria for 
Ti interval validation [25]. In the first step the signal measurements are accepted only 
when they fulfil the condition:
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The interval Ti is accepted if it belongs to the group of three consecutive in-
tervals fulfilling (4). To remain the correct intervals within the slope of accel-
eration/deceleration patterns [27], the validation is carried out bidirectionally. 
A given interval is considered as incorrect only if it does not meet the criteria 
in both directions. The final verification of Ti intervals preliminary classified as 
incorrect is based on the analysis of direction of beat-to-beat changes. A given 
Ti interval is marked as incorrect if the derivative sign reverses for this interval 
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and a product of differences between a given interval and the neighbouring ones 
exceeds the value of 35.

2.2.3. Baseline

The baseline term has been introduced to define the changes in time of the so-called 
basal level of the fetal heart rate. According to the FIGO guidelines [28]: “the base-
line is the mean level of the FHR when this is stable, accelerations and decelera-
tions being absent”. The FHR baseline and the acceleration/deceleration patterns 
are recognized as the most clinically important features of the FHR interpreted both 
in classical visual and in computer-aided analysis. The FHR baseline estimation is 
based on nonlinear filtering, where the filter settings are being adaptively changed 
using the amplitude of the input signal and some statistical parameters of the record. 
Before filtering the averaged FHR values are calculated over a moving window of 
2.5 s width using only the correct interval values Ti. The filtering process is driven 
by prominent rate value F obtained from the frequency distribution of the fetal heart 
rate values in the analyzed record [29, 30]. When the input signal significantly dif-
fers from the actual prominent rate, the filtering stops and the constant value is kept 
on the filter output.
 An iterative filtering of the FHR signal ensures a good FHR baseline fitting, 
both during small FHR changes and accelerations and decelerations episodes. The 
number of iterations applied to a given FHR segment increases as the deviation of 
this segment from the baseline increases. After each filtering the output signal is 
modified to restore the primary samples in these parts where the differences between 
their values and the baseline (the output signal after a given iteration step) are less 
then the established thresholds. With each consecutive iteration the thresholds are 
gradually decreased. Depending on the number of iterations the filter cut-off frequency 
varies from 0.126/min for one iteration to 0.053/min for five iterations. During the 
first 45 minutes of recording, the baseline is estimated every one minute for a whole 
signal and the previous baseline is replaced. As the time goes on, the baseline is 
always estimated over the last 45 minutes. To avoid discontinuity, the initial frag-
ment (15 minutes) of  the final baseline is obtained by weighted averaging of the 
previously and currently determined values. Two parameters directly describing the 
FHR baseline have been included in the input data set for neural network: the mean 
baseline value (BL-Mean) and the fluctuation range of baseline values calculated as 
a difference between maximum and minimum values (BL-Range).

2.2.4. Acceleration and Deceleration Patterns

The fetal heart rate patterns classified as acceleration and deceleration (A/D) 
episodes represent transient deviation of the FHR signal around the baseline with 
established range of amplitude and duration. According to the FIGO definition [28] 
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the  acceleration is recognized if the increase in the FHR above the baseline is of 15 
bpm or more and lasts 15 s or more. Deceleration is a transient episode of slowing 
of the heart rate below the baseline level of more than 15 bpm and lasting minimum 
of 10 s. The first stage in the recognition procedure is a preliminary detection of the 
FHR deviations regardless of the signal loss influence, using the signal completed 
with interpolated samples. In the next stages, the preliminary detected and classified 
deviations undergo verification regarding the influence of signal loss. Some inter-
polated samples are rejected within A/D episodes, that leads to shortening, splitting 
into separate episodes or complete rejection of the pattern. After the correction, the 
signal segments are classified as the acceleration and deceleration patterns only if 
they still fulfil the A/D definition thresholds and the percentage of valid averaged 
values left within them is below 30% and 50%, respectively. All the finally accepted 
accelerations and decelerations are analyzed to calculate their detailed parameters: 
duration, amplitude and area. Numbers of the A/D patterns detected per hour have 
been included into the neural network inputs set as ACC and DEC variables.

2.2.5. Instantaneous Variability

Analyzing the instantaneous variability of the fetal heart rate, the changes of dura-
tion of consecutive cardiac intervals Ti are defined as the short-term variability or 
alternatively the  beat-to-beat variability. Periodical changes of the short-term vari-
ability leading to the fetal heart rate fluctuation in relation to their mean value are 
defined as the long-term variability. The FHR variability is quantitatively described 
by mathematical formulas based on various combinations of mean value, standard 
deviation or interquartile range [31]. Table 1 lists parameters used as the input data for 
the neural networks. All the variability indices are calculated for separated one-minute 
signal windows with samples averaged over 2.5 s. Thus, a given index, depending 
on the signal loss, can be calculated from up to N = 24 values. Exceptions are the 
indices marked with BB, which are calculated using the signal in a form of M events 
Ti within one-minute fragment. With exception of silent and saltatory oscillations, 
the final value of a given index relates to the whole signal record and it is calculated 
as a mean of all one-minute values.

2.2.6. Uterine Contraction Activity and Fetal Movements

The signal of uterine contraction (UC) activity from the fetal monitor is in a range of 
0 to 100 relative units (the value of 10 units corresponds approximately to the strain 
of 100 grams). Contraction is represented on the UC curve as an increase above the 
so-called uterine basal tone – some basal strain exerted by the uterine muscle on the 
strain-gauge transducer when contractions do not occur. The algorithm for automated 
detection of contraction patterns implemented by authors [32] is based on the analysis 
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of frequency distribution of the UC values in the moving window of four-minute 
width. In each window the modal value is selected as a consecutive basal tone sample. 
The contraction starts if the UC value exceeds the level of 10 units above the basal 
and remains above the detection threshold longer than 30 s with amplitude more than 
20 units. Uterine contraction pattern is described by its beginning, duration, amplitude 
and area under the curve. The number of contractions (UC) given per hour detected 
in signal was used as an input parameter for the neural network. The number of fetal 
movements (per hour) perceived by mother during the entire monitoring session was 
added to the neural network inputs set as MOV variable.

Table 1. Definitions of selected indices describing the fetal heart rate variability

Parameter Description
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OSC Oscillation amplitude:
OSC = FHRmax – FHRmin   [bpm]
where: FHRmax = max{FHR1, … FHRK},  FHRmin = min{FHR1, … FHRK}

OSC-Sil Percentage of silent oscillation (OSC ≤ 5 bpm) in a whole trace:
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L – number of minutes in the trace

OSC-Salt Percentage of saltatory oscillation (OSC ≥ 25 bpm) in a whole trace:

OSC Salt
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K = N – for the signal in a form of 2.5 s samples.
K = M – for the signal in a form of event series Ti (marked as BB).
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2.3. Fetal Outcome

For the period of pregnancy, the fetal state assessment, which is done by clinician 
basing on evaluation of CTG trace features, can not be verified. There is no other 
non-invasive diagnostic method that would be able to evaluate the fetal state with 
higher accuracy and thus to play a role of a reference. Fortunately, in perinatology 
it is assumed that the fetal state can not change rapidly. Thus, the real fetal state as-
sessed after delivery (fetal outcome) can be retrospectively related to the previous 
recordings of a given patient. When using neural networks for classification of CTG 
signals, the learning process is accomplished with the known results of fetal outcome 
evaluated by experts just after delivery with a help of three main attributes of the 
newborn. The Apgar score is a simple method for evaluation of newborn’s physical 
condition just after the childbirth using five factors: appearance, pulse, grimace, 
activity and respiration. Each factor is scored on a scale of 0 to 2, with 2 being the 
best score. The resulting sum – the Apgar score-ranges from 0 to 10, and the value 
below 7 is regarded as abnormal. Percentile of birth weight is determined basing on 
neonatal birth weight in relation to its reference value derived form Polish national 
data charts within the range from 28th to 44th completed week of gestation. The 
reference percentiles are stratified by infant sex, and the gestational age is calculated 
by USG. Birth weight below the 10th reference percentile is regarded as abnormal. At 
the time of birth the umbilical cord blood sampling for gas values analysis (especially 
for pH measurement) is considered as very important for fetal oxygenation status. 
The sample of blood from a clamped segment of umbilical cord (usually artery) is 
used. The value of pH below 7.20 means an abnormal fetal state.
 The neural network output (classification result) represents the predicted fetal 
outcome, but in practice, it means the fetal state at the time of CTG monitoring. In 
our application the developed neural network has two-state output representing nor-
mal or abnormal fetal outcome. Common approach in clinical practice is to assume 
the fetal outcome as abnormal, if at least one attribute is outside the physiological 
range. In our research material we noted that the neonatal birth weight was the most 
decisive attribute as it classified 131 fetal outcomes as abnormal, whereas Apgar 
score 45 and pH only 17. The rest 17 fetal outcomes were classified as abnormal 
due to two or all three newborn attributes being outside their physiological ranges. 
The classifier output can be defined alternatively – as OR function of outputs of 
three neural networks predicting the outcome attributes separately. We compared 
these two approaches of neural network output realizations [33], and the obtained 
results showed lower efficiency of the classifier based on OR function of separate 
outputs.

2.4. Neural Networks Modelling

The set of 17 parameters of quantitative description of the CTG signals was chosen as 
input variables for the neural networks. The input data were normalized according to 
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their minimum and maximum values. Fifteen parameters describe the FHR features 
in time domain: the baseline (two indices), the number of recognized acceleration and 
deceleration patterns (two), the short-term variability (six), as well as the long-term 
variability parameters (five indices). Additionally, the number of identified uterine 

Fig. 2. General scheme of the experiments performed with application of the neural networks for the 
CTG trace classification. Seventeen quantitative parameters represent each signal record taken from 
the database. They are fed to neural network inputs in numerical and categorical form. Gestational 
age is used additionally either as the week number or the antenatal group number. During the learning 
stage the input data can be grouped in two ways: Real Approach – with the original sizes of classes 
maintained, and Equal Approach – with classes adjusted to the same size by removing some randomly 
selected records referring to the normal outcome. Fifty trials with randomly arranged contents of the 
data sets are applied. Classification efficiency is determined in relation to fetal outcome for a whole

 research material and separately in the particular antenatal groups
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contractions and the number of fetal movements were involved. We used MLP neural 
networks with the sigmoid activation function. The number of neurons in a hidden 
layer were changed in two ranges: from 2 to 10 with one-neuron step and from 5 to 
250 with five-neuron step. Additionally, different learning time in epochs of 200, 
500, 1000, 5000, 10000 as well as the learning rate with values of 0.001, 0.01, 0.1, 
0.15, 0.5 were applied. The momentum term was set to 0.3. The values of weights 
were initialized using a uniform random generator inside the interval [0.0, 1.0]. The 
output was a single neuron and the threshold between the two classes analyzed was 
automatically determined, while minimizing the classification error. The steepest 
descent gradient algorithm was used.
 To avoid the situation when the network with a given structure provides very 
good results only by chance, we applied a set of trials with randomly arranged con-
tents of data sets (Fig. 2). In every experiment, the cases were 50 times randomly 
assigned to three data sets: learning, validating and testing. As a result we obtained 
50 neural networks with a given constant structure, but with different performance 
parameters resulted from the learning process. The normal and abnormal cases were 
partitioned in the learning, validating and testing data sets in proportion 50%, 25% 
and 25% respectively. The ratio of cases with normal fetal outcome to abnormal one 
in each set was constant in all trials. The exception was the Equal-Approach learning 
which will be described later. Results of the particular experiments are presented as 
mean values (with standard deviations) calculated for all trials.

Table 2. Summary statistics of the classification results obtained for three NNs designed with different
data representations and learning data set organization

Data representation: Categorical values Numerical values

Learning type: Real-Approach Real-Approach Equal-Approach

Prognostic index  (mean  ± SD [%])

SE 52.9 ± 12.4 64.7 ± 6.6 59.2 ± 7.1
SP 65.8 ± 11.6 66.6 ± 3.6 72.5 ± 3.2

PPV 37.9 ±   7.0 43.9 ± 5.3 39.0 ± 4.7
NPV 78.9 ±   4.0 82.3 ± 3.6 85.7 ± 2.5
CC 62.5 ±   7.5 66.0 ± 4.6 69.5 ± 4.5
OI 56.0 a ±   8.6 62.4 ± 6.7 61.6 ± 8.5

a – statistically significant difference on level p < 0.001.

2.5. Experiments 

Pregnant woman can be monitored many times, especially in case of high-risk 
pregnancy, which causes that a given fetal outcome is related to several CTG traces. 
For the classification procedure it is possible to select one trace for each patient, for 
example the one registered as close as possible to the delivery. However, in [33] 
we stated that leaving the research material unchanged gives better results, and thus 
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this approach was used in the current study. The general scheme of the experiments 
carried out in this study is illustrated in Fig. 2.
 In the database the fetal signal records are represented by 17 quantitative param-
eters which were fed to the neural network inputs in numerical and categorical form. 
Information on gestational age was used additionally either as the week number or 
the antenatal group number. During the learning stage the input data were grouped 
in two ways: Real Approach – where the original sizes of classes were maintained, 
and Equal Approach – with classes adjusted to the same size by removing some ran-
domly selected records referring to the normal outcome. Fifty trials with randomly 
arranged contents of data sets were applied. Classification efficiency was determined 
in relation to the fetal outcome for a whole research material and separately for the 
particular antenatal groups. Eleven parameters of quantitative description of CTG 
signals could be converted from their original numerical values into categorical ones 
basing on the established ranges of physiology [34]. After the conversion the value of 
0 means that the corresponding numerical value is within the normal range, whereas 
1 means the abnormal value. The range is a function of gestational age at which the 
CTG signals were recorded. Descriptive statistics of the input parameters and its 
abnormal and normal values within the material collected are listed in Table 3. For 
both data set representations the neural networks were proposed.

Table 3. Descriptive statistics of input parameters ranked according to the importance index determined 
as the mean value of the numerical inputs positions taken in all fifty trials with a use of the MLP neural

network

Input
parameter

Abnormal range
Mean ±  SD Min ÷ Max Mean value of 

ranksNumber
of traces

Percentage
of traces [%]

ACC           [number] 205 27.4  8.49 ± 5.77  0.0 ÷ 36.3  2.60
LTI             [–] 167 22.3 24.08 ± 7.79  5.8 ÷ 50.5  3.06
STI             [–] 138 18.4  1.14 ± 0.33 0.3 ÷ 2.6  4.64
STI-BB a     [–] – –  0.50 ± 0.11 0.2 ÷ 1.0  5.40
STV-BB a      [–] – –  2.86 ± 0.73 1.1 ÷ 6.7  5.74
DI-BB a      [–] – –  4.61 ± 1.19  1.6 ÷ 10.5  6.22
DI              [–] 188 25.1  9.34 ± 2.77  2.6 ÷ 19.9  8.76
UC             [number]  65  8.7  2.91 ± 4.97  0.0 ÷ 27.1  9.02
LTV            [ms] 117 15.6  42.45 ± 11.04 10.8 ÷ 75.2  9.48
BL-Range a [bpm] – – 12.54 ± 2.61  0.0 ÷ 21.4 11.24
BL-Mean a   [bpm] – – 143.62 ± 8.940 115.4 ÷ 72.40 11.40
MOV          [number] 423 56.5  33.38 ± 47.54   0.0 ÷ 506.2 11.76
DEC           [number]  30  4.0  1.56 ± 2.87  0.0 ÷ 25.0 11.92
OSC-Sil      [%] 206 27.5  6.01 ± 8.57  0.0 ÷ 70.3 12.58
OSC a          [bpm] – – 14.58 ± 3.79  5.0 ÷ 26.0 12.60
STV            [ms] 137 18.3  6.03 ± 1.86  1.4 ÷ 13.4 13.24
OSC-Salt    [%]  15  2.0 11.44 ± 0.81  0.0 ÷ 75.0 13.34

a – reference chart not determined for this parameter.
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 In highly-developed countries the fetal outcome is normal in most of the cases. 
Our relatively high number of abnormal cases – 210 (28%) in relation to the normal 
ones – 539 (72%), is caused by the fact that the research material was obtained from 
clinical centre which represents in Poland the highest level of perinatal care. In 
such centres the number of abnormal cases can reach up to 40%. However, research 
material with still extreme difference in class sizes in the learning process may be 
considered as unfavourable. On the other hand, class sizes corresponding to the real 
distribution should give better performance of neural networks. Therefore, during 
the learning stage the input data were grouped in two ways (Fig. 2), and the results 
of classification were compared. The first grouping was called the Real-Approach, 
in which the original sizes of classes were maintained in the learning data set. Since 
we partitioned the normal and abnormal cases into the learning, validating and test-
ing data sets with proportion 50%, 25% and 25% respectively, the learning set have 
included initially 370 cases referring to normal and 105 corresponding to abnormal 
fetal state. In the second data grouping called the Equal-Approach, both classes 
were equalized by removing some randomly selected records referring to the normal 
outcome. Finally, the reduced learning data set comprised the same number (105) of 
the normal and abnormal cases.
 A large number of the input parameters with quantitative description of the CTG 
signals leads to question about their real influence on the classification quality. This 
was investigated by estimation of an importance index for each particular input vari-
able within all 50 learning trials. The importance index was defined as the ratio of the 
number of correct classifications by the neural network learned without the given input 
variable, to the one obtained by the network trained with all input variables. 
 With the progress of pregnancy, the features characterizing the CTG signals 
change. In the monitoring system for a given date of CTG recording the current 
gestational age is determined in relation to the gestational age being entered to the 
database after calculation it with the aid of data obtained through the ultrasound 
examination that had been performed before the 20th week of gestation, confirmed 
by the modified Ballard method. That enabled two successive experiments to be 
performed in order to investigate how a different gestational age at which the signals 
were recorded, influences on the classification process.
 In the first experiment the research material was partitioned taking into account 
the distribution of antenatal CTG traces recorded between 28th and 41st week of 
pregnancy. In order to ensure comparable number of records, four overlapping sets 
S1 ÷ S4 were proposed (Table 5). Additionally, 286 traces recorded at labour were 
extracted from the material and assigned to set SL. Classification was performed 
using the neural networks for each group separately. For every experiment by the 
trial and error method the best network structure was selected and basic parameters 
of the learning algorithm were set.
 In the second the information on the gestational age was directly applied as an 
input in two ways: as the number of completed week of pregnancy, and as the number 
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of one of previously established four groups of antenatal traces. For a given gesta-
tional age expressed with accuracy of day its distances as an absolute differences to 
centres of the four groups were determined: G1 – 34.5 , G2 – 35.5, G3 – 36.5, G4 
– 38.5. A given CTG record was assigned to the group with minimum distance. If 
the absolute difference was equal for two groups, this one of the higher centre was 
chosen. After conversion we obtained 228 traces with gestational age assigned to 
the G1, 105 to G2, 123 to G3 and 183 to G4 group.
 Classifying the CTG signals as corresponding to abnormal or normal fetal state 
is a kind of diagnostic test giving positive or negative result, respectively. Relating 
it to a true result – the fetal outcome, allows for performance measurement using 
sensitivity (SE), specificity (SP), positive (PPV) and negative (NPV) predictive values. 
The evaluation of the neural networks performance is difficult when analysing all 
prognostic indices simultaneously. Therefore, the overall prognostic index OI was 
defined:

   OI
SE NPV SP PPV

=
⋅ +( ) ⋅

+( )2

3 2
[%]  (5)

The sensitivity weight is doubled in OI formula because it is crucial to minimize 
the number of false negative cases, which they have more serious consequences 
than the false positive ones. We also calculated the percentage of correct classifica-
tions (CC).

3. Results and Discussion

An increase of number of epochs above 500 did not affect significantly the prediction 
quality. As for the learning rate the best results were obtained for 0.01 and 0.15. An 
increase of number of hidden neurons led to decrease of the generalization ability 
of the neural network and thus to decrease of the prediction quality for the testing 
set. The above tendencies were noted for all experiments. Table 2 presents three dif-
ferent classifiers, which provided the best results for particular combination of the 
data representation and the type of learning process applied. Testing the influence of 
data set representation on the neural networks efficiency we noticed decreasing of all 
mean values of prognostic indices for the categorical inputs (together with increasing 
of their SD values). In turn, changing the type of data learning from Real-Approach 
to Equal-Approach caused an increase of the CC, SP and NPV indices, whereas the 
PPV and the most important SE decreased. This tendency resulted in decreasing 
of the OI, but this change was not statistically significant. The results caused that 
in the next experiments the networks were designed with the numerical input data 
representation and the Real-Approach mode of learning.
 Additionally, the importance index was calculated for all inputs, and then the 
inputs were ranked according to the index value. The mean values of ranks for a given 
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input in all trials, which represents its real influence on classification quality, are 
shown in Table 3. The rank value of 1 was assigned to the highest importance index, 
whereas 17 to the lowest one. It is easy to see, that the most significant parameter 
is the number of accelerations as well as the indices describing the FHR variability. 
This confirms that they are regarded as crucial signs of fetal wellbeing.
 The influence of the gestational age, as an additional neural networks input, on 
the classification efficiency is presented in Table 4. The best classification quality was 
achieved for the MLP neural network with six hidden neurons fed with seventeen 
numerical parameters of CTG analysis. The additional input was the gestational age 
as a number of the gestational group, and the original proportion between normal 
and abnormal fetal outcomes was maintained. We obtained the sensitivity of 65.7% 
and the specificity of 68.5%. 

Table 4. Classification results obtained for two NNs designed with two representations of gestational age 
applied as an additional input parameter

Gestational age
representation Completed week of pregnancy Number of the antenatal group

Prognostic
index

Mean ± SD
[%]

Min 
[%]

Max 
[%]

Mean  ± SD
[%]

Min 
[%]

Max 
[%]

SE 62.6 ± 8.0 45 78 65.7 ± 8.5 47 84
SP 64.4 ± 5.5 48 77 68.5 ± 6.2 53 79

PPV 42.2 ± 7.5 28 58 45.6 ± 7.9 25 61
NPV 80.6 ± 4.6 71 88 83.3 ± 4.6 75 93
CC 63.9 ± 6.6 51 78 67.7 ± 6.6 51 80
OI 60.5 ± 11.1 47 71 63.9 ± 10.2 47 74

 Improvement of the classification quality was noted when the whole data set was 
divided into the five sets according to the gestational age and the neural networks 
were designed separately for each set (Table 5). In general, for the sets S1, S2 and 
S3 we obtained higher values for the most prognostic indices in comparison to the 
previous experiment, when gestational age was applied as an additional input. Taking 
into account statistical significance of the differences among the OI values, the best 
results were obtained for the neural network designed for the set S1. The highest 
sensitivity of 71.3% and specificity of 72.5% were obtained for the set of signals 
recorded in the earliest period of pregnancy, i.e. between 33rd and 36th week. With 
the increase of gestational age the decrease of prognostic indices was observed. 
These results can be in some way related to those obtained in [22] – sensitivity of 
73% and specificity of 94%, but it must be pointed out, that our results are much 
more rigorous because they concern mean values obtained after 50 trials with the 
randomly mixed learning and testing subsets. Additionally, in [22] much more input 
variables (30) were used and the abnormal fetal outcome was defined by more strict 
criteria applied to the newborn description. 
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4. Conclusions 

In the presented work, a number of experiments were done in order to show an 
influence of the input data on classification of CTG signals as predicting normal or 
abnormal fetal outcome using  the MLP neural networks. Classification was carried 
out through seventeen selected parameters of the computerized quantitative analysis 
of CTG record. These parameters were fed to the neural networks input layer in the 
original numerical form, as well as in the categorical form after their conversion 
basing on established ranges of physiology. The real fetal outcome was defined as 
abnormal, if the value of at least one attribute (Apgar score or percentile of birth 
weight or pH level) was outside the physiological range.
 Various structures of learning subsets were tested to consider that during 
pregnancy the fetus is usually monitored several times which leads to assigning a 
number of CTG traces to one fetal outcome. Representation of the input variables in 
the categorical form caused a decrease of all performance indices (with an increase 
of their standard deviations), so the numerical representation should be preserved. 
However, it could be connected with the fact, that the number of categorical input 
variables (11) was smaller than the number of numerical ones (17).

Table 5. Characteristics of the sets with gestational and intrapartum traces and summary statistics of the
 associated classification results

Traces sets SL S1 S2 S3 S4
Gestational age 
[weeks] Labour <33÷36> <34÷37> <35÷38> <36÷41>

Material
characteristics 286 / 43% 285 / 32% a 284 / 31% 279 / 30% 278 / 29%

Prognostic index  (Mean  ± SD [%])
SE 66.5 ± 8.4 71.3 ± 8.8 66.1 ± 10.3 67.8 ± 10.2 61.8 ± 10.1
SP 68.0 ± 9.7 72.5 ± 7.8 70.6 ± 7.4 67.0 ± 6.2 66.8 ± 8.2
PPV 62.0 ± 11.0 55.9 ± 10.3 51.4 ± 10.0 46.6 ± 7.7 43.1 ± 10.4
NPV 72.2 ± 7.5 83.8 ± 5.9 81.7 ± 6.1 83.1 ± 5.5 81.6 ± 4.7
CC 67.4 ± 9.6 72.1 ± 7.8 69.2 ± 8.2 67.3 ± 7.4 65.5 ± 9.8
OI 66.6 ± 13.2 b 69.6 ± 13.4 c 66.0 ± 13.0 64.3 ± 12.6 61.3 ± 12.9

Prognostic index  (Min ÷ Max)
SE 45 ÷ 90 50 ÷ 90 42 ÷ 95 43 ÷ 87 35 ÷ 83
SP 44 ÷ 89 52 ÷ 88 54 ÷ 84 48 ÷ 77 48 ÷ 83
PPV 35 ÷ 85 39 ÷ 78 30 ÷ 68 24 ÷ 63 22 ÷ 65
NPV 56 ÷ 90 69 ÷ 94 67 ÷ 97 70 ÷ 93 71 ÷ 91
CC 46 ÷ 75 59 ÷ 82 57 ÷ 77 50 ÷ 83 51 ÷ 71
OI 45 ÷ 78 57 ÷ 83 50 ÷ 78 48 ÷ 77 47 ÷ 75

a number of records / percentage with abnormal fetal outcome.
b statistically significant difference SL vs. S4 (p < 0.01).
c statistically significant difference S1 vs. S2, S3, S4, SL (p < 0.02).
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 Among the numerical input parameters the most significant were the number 
of accelerations and the indices describing the instantaneous variability of the FHR. 
Improvement of the classification quality was noted when whole data set was divided 
into the sets according to the gestational age, and the neural networks were designed 
separately for each set. However, the classification quality indices decreased with 
increase of gestational age. We found these results as encouraging and the plan for 
our future research is to collect larger database in order to select more representative 
groups with gestational as well as intrapartum traces.
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