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As shown in modeling and experimental studies, network comprised of spiking cells in-
terconnected by inhibitory and electrical synapses may express different activity patterns 
without any change of the network topology or parameters. In this study we confirm robust-
ness of this phenomenon by demonstrating multi-stability of hybrid networks consisting of 
biological neurons of different types. Moreover we show here, using relaxation oscillator 
model cells, that multi-stability of in-phase (IP) and anti-phase (AP) patterns may be 
expressed in a network fully connected by instantaneous synaptic inhibition and electrical 
coupling independently of the network size. In such a network a stimulus of a given profile, 
consisting of depolarizing and hyperpolarizing signals sent to different subpopulations of 
cells, can evoke direct switching between IP and AP patterns. We also show that similar 
phenomenon occurs in more realistic network models with sparse connectivity. Our results 
suggest that transient signals if arriving in a proper time window may instantaneously 
reconfigure a given spatio-temporal activity pattern expressed by the network into another 
stable pattern without any change of the network properties.

K e y w o r d s : hybrid network, oscillatory microcircuits, patterns’ switching

1. Introduction

Neural networks, as other dynamic systems, can express for a given set of para-
meters, multiple stable activity patterns and switching between these patterns can be 
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evoked by some external transient input, a phenomenon known as network multi-
stability. Although multi-stability has been extensively studied at the level of single 
cell (for example, plateau activity) providing new understanding of the operation 
of the neural cell and their consequences on network function [1–5] much less of 
studies have been devoted to understand multi-stable properties of neural networks. 
However, modeling studies of dynamics of non-oscillatory networks demonstrated 
a form of binary memory switch provided by a plateau like activity of the network 
that can be turn on or off by transient inputs [6–12]. Moreover, in a model of oscil-
latory network consisting of 2 inhibitory neurons, bi-stability of in-phase (IP) and 
anti-phase (AP) solutions has been found in the case of slow synaptic kinetics [13] or 
fast synaptic inhibition combined with electrical coupling [14–17]. Also, conditions 
of switching between multi-stable patterns as well as properties of switching stimuli 
have been described in 2, 4 and 6-cell networks fully connected by fast inhibition 
and electrical coupling [17].
 In the present study the robustness of 2-cell network bi-stable properties is con-
firmed by using different types of biological cells in a hybrid network configuration. 
Moreover we further investigate multi-stable properties of larger oscillatory networks 
comprised of relaxation oscillators. We show that in such networks fast inhibition 
combined with electrical coupling produces multi-stability of IP and AP patterns 
which co-exist, for a given coupling range, independently of the network size and 
we demonstrate this phenomenon in a 100-cell network. Moreover, we demonstrate 
that multi-stability of IP and AP patterns is still expressed in a more realistic network 
model in which “all to all” type of coupling is replaced by sparse connectivity.

2. Materials and Methods

2.1. Experimental 

All biological experiments were performed either on the stomatogastric nervous 
system of adult lobster H. gammarus or neonatal mouse spinal cord. 
 The lobsters were purchased from fishery supply, and maintained in tanks of 
aerated recycling seawater kept at 14–15°C. The two commissural ganglia (CoG) 
were removed from the ventral nerve chain. The isolated CoGs were pinned down 
in a Sylgard (Dow Corning) lined Petri dish, and continuously superfused with sa-
line held at 12–14°C. The saline composition was (in mM): 479 NaCl, 12.74 KCl,
13.2 CaCl2, 10 MgSO4, 3.9 Na2SO4, 5 HEPES (adjusted to pH 7.45 with NaOH). In 
all experiments, chemical synaptic transmission was blocked using low Ca2+ saline 
(479 NaCl, 12.74 KCl, 3 CaCl2, 10 MgCl2, 3.9 Na2SO4, 10 MnCl2, 5 HEPES; adjusted 
to pH 7.45 with NaOH). 
 Postnatal P0-P3 OF1 mice (Charles River Laboratories, France) were sacrificed 
by decapitation, according to protocols approved by the European Community 
Council and conforming to NIH Guidelines for Care and Use of Laboratory animals. 
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Postnatal day 0 (P0 = E19.5) corresponded to the date of birth. Brainstem-spinal 
cord was prepared in the « open-book » configuration as previously described [18]. 
Briefly, the brainstem-spinal cord was dissected, dorsally opened and meninges were 
removed. The preparation was placed in the recording chamber and continuously 
perfused at 30°C ± 2°C (perfusion rate of 3–5 ml/min; chamber volume of 1.5 ml) 
with an artificial cerebrospinal fluid (ACSF) containing the following (in mM):
113 NaCl, 25 NaHCO3, 11 D-glucose, 4.5 KCl, 2 CaCl2, 1 MgCl2 and 1 NaH2PO4 
(307 mOsmol/l) (equilibrated with 95%O2–5%CO2).

2.2. Electrophysiology 

In lobster, intracellular recordings were performed as previously described in [19]. 
The single Lcell neuron was identified according to its position, size and axonal 
projections [20]. The membrane potential of the Lcell was monitored with Glass 
microelectrodes (resistance 20–30 MΩ filled with 2 M potassium acetate), this signal 
was amplified with Axon Instruments Axoclamp 2B amplifiers (Molecular Devices, 
Union City, CA) and digitized using a CED device (Cambridge Electronic Design, 
Cambridge, UK). Data acquisition and analysis were performed using Spike2 Soft-
ware. Each neuron was impaled with two electrodes, one to monitor the membrane 
potential, the other for current injection. Artificial synaptic conductances were in-
troduced between the two isolated Lcells using a dynamic clamp system (see [21] 
for precise procedure). The artificial instantaneous synaptic current i syn ([nA)]) was 
calculated according to the equation i syn = g syn s(t)(v – v syn) where g syn ([nS]) is the 
maximal synaptic conductance, v ([V]) is the cell membrane potential and vsyn [V] 
corresponds to the synaptic reversal potential which was set to –0.05 V. The dy-
namics of synaptic transmission are described by: ds(t)/dt = (1 – s(t))/τr – s(t)/τd , 
where s(t) is the fraction of transmitter  released at time t ([ms]) and τr and τd  ([ms]) 
are the time constants of the synaptic rise and decay, respectively.
 Gap junction current i el ([nA)]) was represented by i el = g el (v – v p) where
g el

 ([nS]) is the gap junction conductance and v p ([V]) is the membrane potential 
of the pre-synaptic cell. In order to avoid any tonic compound of the artificial i el an 
arbitrary offset was added to the recorded voltage so that resting potential of the two 
cells were equalized to – 0.025 V. Under the dynamic clamp the artificial synaptic 
current was injected into the (postsynaptic) cell when the membrane potential of the 
other (presynaptic) cell reaches a given threshold v th (spike detection).
 Whole-cell patch-clamp recordings were performed on P0-P3 mouse spinal 
motoneurons identified according to their morphological features (pear-shaped large 
cell body) and disposition in column in the ventral horn [18]. An Olympus BX51WI 
microscope equipped with differential interference contrast (DIC) and a CCD camera 
(SPOT RT-SE6, Diagnostic Instruments, Sterling Heights, MI, USA) was used to 
visualize motoneurons. The patch electrodes were constructed from a thin-walled 
single-filamented borosilicate glass (1.5 mm outer diameter; Harvard Apparatus, 
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Les Ulis, France) using a two-stage vertical microelectrode puller (PP-830; Nar-
ishige, Tokyo, Japan). Pipette resistances ranged from 3 to 5 MΩ and the seal resist-
ances >10 GΩ. Dual whole-cell recordings were achieved using pipettes containing
(in mM): 130 Kgluconate, 10 HEPES, 10 EGTA, 5 NaCl, 2 MgATP and 1 CaCl2, 
pH 7.4 (296 mOsmol/l). The patch electrodes were positioned on visually identified 
motoneurons using motorized micromanipulators (Luigs & Neumann, Ratingen, 
Germany). All recordings were made with an AXON Multiclamp 700B amplifier 
(Molecular Devices, Sunnyvale, CA, USA). Data were low-pass filtered (2.4 kHz) 
and acquired at 10 kHz on a computer using an analog-to-digital converter (Digidata 
1322A; Molecular Devices), and a data acquisition software (Clampex 9.2; Molecu-
lar Devices). Measurements were corrected for liquid junction potentials (3.4 mV, 
calculated using the Clampex Junction Potential Calculator).

2.3. Computational Modeling Methods

2.3.1. The Cell Model

The single cell model is described using a dimensionless relaxation oscillator model, 
described in details elsewhere [15]. Briefly, the model consists of set of first order 
differential equations (equation 1–2) in which each cell is represented by two di-
mensionless state variables: Vi which is the membrane potential deviations of the cell 
from a reference voltage (this reference value is midway between the depolarized 
and hyperpolarized voltage ranges during oscillator’s intrinsic cycle) and a slow 
recovery variable Wi dependent on the membrane potential Vi:

   τν
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 Dimensionless parameter G fast describes the properties of instantaneous voltage-
dependent current (a degree of N-shape, see equation 1) and thereby corresponds to 
the current’s conductance in some range of voltage. Dimensionless parameter G slow 
models the voltage dependent activation function of the slow current (see equation 2) 
and is also correlated with the magnitude of the current’s conductance. Instantaneous 
synaptic current I syn (dimensionless) is given by 
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where G syn is the maximal synaptic conductance (scaled by leak conductance) V j 
is the membrane potential of the presynaptic cell j, E syn is the synaptic reversal po-
tential, Θ syn represents the midpoint for synaptic activation and k syn the steepness 
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of the synaptic activation function. Function σ(x) is given by σ(x) = 1/(1 + e x). Gap 
junction current is represented by

   I G V Vi
syn gap

j i
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=
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where G gap is electrical conductance (scaled by leak conductance). I ti
in ( )  is exter-

nally injected input current (dimensionless). τv and τw (Vi ) are the membrane time 
constant and the time constant of slow current dynamics, the latter depending on 
the membrane potential Vi :
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with τ1 and τ2 specifying the minimum and maximum time constants and thereby 
determining the durations of the active and silent phases of the oscillator – and k tw  
quantifying the rate of voltage dependence.
 In the present study following dimensionless parameters are identical for all 
junctions and neurons: E syn = –4, Θ syn = 0, k syn = 0.02, G fast = 2, G slow = 2, τ1 = 5, 
τ2 = 50, k tw = 0.2, τv = 0.16.
 The parameters have been chosen to model neurons with a relatively steep 
synaptic onset and short duty cycle (i.e. the fraction of the cycle when the cell is 
depolarised above threshold and may exert synaptic action). With this choice of 
 parameters, equations 1–5 may be considered a model of spiking neurons. In the study 
presented here, the only parameters varied from the defaults are the dimensionless 
conductances G gap and G syn of the gap and synaptic junctions, respectively.
 The model has been implemented as a set of Matlab functions which compute 
the quantities defined by the five above-described equations and integrate the set 
of ordinary differential equations using Matlab’s standard ode45 solver with the 
default tolerance parameter settings. The external input currents I ti

in ( )  are assumed 
to be piecewise constant. The implementation has been compared to an independent 
realisation using a xpp tool and found to give identical results.

2.3.2. Analysis Methods

The investigation of the oscillatory behaviors generated by networks of the type 
under study is time-consuming and has been automated as much as possible. For 
a given choice of the conductance parameters, the network dynamics is integrated 
from a suitable starting state. The first 30% of the simulation following the comple-
tion of any non-zero input signal is discarded to mitigate the effects of transients and 
the membrane potentials are computed at time points with an interval of 0.2 units. 
Given these values, an attempt is made to estimate a period of regular oscillation for 
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the network by computing the positions of peaks in the autocorrelation of the signals 
and looking for recurring inter-peak periods. If this calculation fails, the network 
is simulated further and the calculation repeated. If no period can be found with 
simulations up to 3000 units in duration, the signals are reported to be un-analysable. 
(The typical period of oscillation for the parameters used is 20–25 time units.) Once 
a period has been determined, the network signals are analysed. Samples for a single 
period are generated and the traces of the individual cells compared, to group the 
cells into classes executing the same behavior with possibly differing phases. In all 
cases reported here, the cells execute the same behavior, that is they all exhibit the 
same voltage trace to the resolution of the grouping test though their phases within 
that common trace may vary. Once the cell behaviors have been grouped, the clas-
sification of oscillatory modes is performed. The analysis distinguishes the behaviors 
illustrated in Fig. 2. 
 For a given choice of the parameters, the network exhibits a number of oscilla-
tory behaviors. In this study, we vary two principal conductance parameters G gap and 
G syn, over the range in which interesting behaviors occur, for the networks compris-
ing of 2, 4 and 6-cells. The reported results generated as follows for each pair of the 
parameter values investigated.
 (i) a set of 8 random initial states for the network are generated, using a zero 
mean Gaussian distribution with 0.025 standard deviation. Random current input 
of length 250 time units is then constructed using independent identically Gaussian 
distributed random values with zero mean and 0.005 standard deviation for each 
time step. For each set of the initial conditions the model is integrated with the input 
current for around 10 periods. Then this input is removed and the behavior of the 
network that results is analyzed and classified. 
 (ii) the model is integrated from a zero initial state, and the generation of a IP 
behavior is checked. If IP is generated, random input current as described above is 
applied to see whether IP is stable in the presence of noise. The behavior is then 
classified.
 (iv) the model is integrated from a zero initial state as before, and if a stable IP 
behavior is generated an attempt is made to switch the network to AP: half the cells 
receive a 1 unit positive current injection and half a 1 unit negative current injection 
for 0.2 time units, applied at time point between phase Φ = 0.4 and 0.6 in the cycle 
of oscillation. Again, random current inputs following transient switching impulse 
are used to verify that the behavior switched to is stable in the presence of noise. 
The behavior is then classified.
 The reported set of behaviors is the union of the results of the three steps above. 
In our opinion this procedure represents a reasonable compromise between computa-
tional effort and completeness of the results. Note, however, that it is not complete: 
the presence of any particular type of behavior other than AP and IP is only detected 
if a suitable initial state is chosen (one that lies within the basin of attraction of that 
behavior) and this cannot be guaranteed. 
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3. Results

 Bi-stability of a 2-cell inhibitory network has been demonstrated in modeling stud-
ies either for the slow inhibitory synapses alone [13] or for fast inhibition combined 
with electrical coupling [14–17]. This later case is illustrated in Fig. 1A, where two 
model cells (relaxation oscillators) interconnected with both instantaneous inhibition 
and electrical synapses express IP (Fig. 1A1, IP is indicated by black dots above record-
ings) or AP (Fig. 1A2) behavior for the same network parameters. Switching between 
these two patterns can occur spontaneously if noise of sufficient amplitude is introduced 
to the network (Fig. 1A3). Although this network feature has never been described in 
a purely biological network, some studies have shown that it can be found in hybrid 
networks in which biological cells from snail ganglion [16] or cortical slices [22] are 
interconnected by artificial synapses via a dynamic clamp system. To further explore 
the robustness of this phenomenon we performed similar experiments using other types 
of spiking neurons. Our results confirm that bistability of IP and AP behaviors can be 
easily found in networks comprised of biological neurons. Indeed, as illustrated in Fig. 
1B-C, we have found spontaneous switching between AP and IP (see dots) behaviors 
in networks consisting of 2 lobster Lcells (Fig. 1B) or 2 neonatal mouse motoneurons 
(Fig. 1C) interconnected by electrical and inhibitory synapses via a dynamic clamp. It 
must be noted that such behaviors has been observed in all recorded pairs of neurons 
(n = 30 and 6 of Lcells and motoneurons, respectively) by adjusting the strength of 
inhibitory and electrical conductances. 
 In the next step, in order to predict the behavior of large-scale networks, we 
calculated in more details than previously [17] and compared the occurrence of pat-
terns in 2, 4 and 6-cell networks. For 4 and 6-cell networks we used intrinsic cell 
parameters identical to the 2-cell model network but scaled the synaptic conductance 
to maintain constant the total synaptic conductance of a single model cell. 
 In the 6-cell network (Fig. 2A) different types of activity pattern can be found 
depending on coupling strength (Fig. 2B). Beside IP and AP patterns in which 6 cells’ 
oscillations occur with the phase shift Ф equal 0 (Fig. 2B1) and 0.5 (Fig. 2B2), cells 
could express phase shift Ф < 0.5 in patterns which we classified depending on the 
number of expressed phases. For example, in a 2-phase pattern 2 groups of cells 
express synchronous activity with some phase shift Ф (< 0.5) between the groups 
containing 1 and 5 cells as in Fig. 2B3 or 2 and 4 cells (not shown). 3-phase pat-
tern is realized by division of the network into 3 groups containing 1, 2 and 3 cells 
(Fig. 2B4) or 2, 2 and 2 cells (not shown). Similarly 4 and 5-phase pattern contain 
4 and 5 groups of cells, respectively (see examples in Fig. 2B5-6) whereas 6-phase 
pattern consists in each of 6 cells expressing different phase of oscillation (Fig. 6 
B7). It should be noted that only in IP and AP patterns cells’ trajectories are identical 
(for example identical voltage traces, or identical two-dimensional trajectories in 
the phase space (v, W) (see Methods)), we therefore call these patterns symmetrical, 
whereas other patterns, in which cells trajectories differ, we call asymmetrical. The 
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Fig. 2. Multiple stable activity patterns in 2, 4 and 6-cell network. A. Wiring diagram of 6-cell oscillatory 
network with full synaptic connections. B. Examples of various patterns expressed by the 6-cell network. 
Timing of oscillations is schematically represented by bars. Two symmetrical patterns: IP (B1) and AP (B2) 
are characterized by identical trajectory of all network members. Asymmetrical patterns characterized 
by different cell trajectories can contain from 2 to 6 phases (2 phs, B3 – 6 phs, B7). Notice the synergic 
group of 2, 3, 4 or 5 cells. C. Occurrence of the activity patterns as a function of synaptic strength in 
2 (C1), 4 (C2) and 6 (C3) cell network. Parameters: G syn = 0.014 (B), G gap 0.06 (B1-B2), 0.01 (B3-B4),

σ_noise = 0.005, independent identically distributed Gaussian for each 0.2 unit integration step in C

symmetrical IP and AP patterns were expressed in all networks investigated, inde-
pendently of the network size. By contrast, the number of asymmetrical patterns was 
reduced with decreasing the network size; only three asymmetrical patterns were 
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expressed in the 4-cell network (one 4-phase, one 3-phase and one 2-phase pattern) 
and only one 2-phase pattern was expressed in the 2-cell network (not shown).
 The occurrence of the above patterns as a function of the inhibitory and electri-
cal synaptic strength is shown in Fig. 2C. For inhibition alone only the asymmetrical 
patterns of maximal number of phases are stable: 2-phase pattern in 2-cell network, 
4-phase pattern for the 4-cell network and 6-cell pattern for the 6-cell network 
(see Fig. 2C1-3). Increasing the strength of the electrical coupling G gap produces 
a reduction of number of phases of the expressed asymmetrical patterns in 4 and 
6-cell networks ( see a transition from 4 or more phase to 2-3 phase patterns in
Fig. 2C2-3) and appearance of the symmetrical AP pattern in all investigated network 
sizes (Fig. 2C1-3). Further increasing of the electrical coupling leads to appearance 
of IP behavior until for a sufficiently large G gap AP disappears and only the IP pattern 
is expressed. Importantly the latter coexists with the AP pattern in similar parameter 
domains in 2, 4 and 6-cell networks (compare surfaces underlined with dotted lines, 
Fig. 2C1-3). It seems that such a parameter domain will exist for all networks sizes 
assuming our scaling the conductance parameters to maintain constant synaptic input 
to a single cell. This can be explained as follows.
 First, the more tightly electrically coupled the cells are the harder is for two groups 
of cells oscillating in anti-phase to coexist in a stable AP pattern. Indeed, when a cell 
changes its group memberships due to a noisy input, the symmetry of the pattern is 
broken. This leads, as a consequence of a fusion of the two groups (asymmetrical pat-
terns are unstable in a region of parameters considered), to IP activity. This determines 
the ‘upper’ boundary of the parameter domain, where AP ceases to be expressed. Notice 
that such a change of memberships is easier in 2 than in 4-cell network, as indicated by 
a lower position of the ‘upper’ boundary in the 2-cell network (c.f. Fig. 2C1 and 2C2). 
How the “upper” boundary will evolve with increasing the network size? Importantly, 
the change of memberships of a given cell is most likely during firing phases of two 
groups of cells involved in the AP activity. This is due to the fact that only during these 
phases the value of the slow recovery current (W, in our cell model, see Methods) is 
equal for the two groups of cells [15]. Therefore a transition of a cell between groups 
can be produced quickly, caused only by a change of a membrane potential due to a 
noisy current. Let’s assume now a 2N-cell network expressing alternating activity of the 
two N-cell groups (AP pattern) and consider the forces acting on a single cell belonging 
to a given group during a firing phase of the other group. The cell receives inhibition 
from the N firing cells and, at the same time, is electrically coupled to them. These two 
factors have opposite effects on a probability of cell’s transition between groups: of 
course, the stronger electrical coupling the most probable the transition. However, the 
cell is also electrically coupled to N-1 cells of its own group, which prevents it from 
leaving the group. This coupling conductance is equal to Ggap (N – 1)/(2N – 1) and 
therefore increases from 0 (N = 1) to G gap/2 (N infinitive), which increases stability of 
the AP pattern and moves somewhat up the ‘upper’ boundary when the network size 
is raised. The effect is mostly pronounced for the weak inhibition.
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 A similar reasoning may be applied to a ‘lower’ boundary of the coexisting 
IP and AP patterns where IP pattern ceases to be expressed. The IP pattern losses 
stability when one of cells is able to escape from the synchronous group of cells 
and to fire in a different phase than the remaining 2N-1 cells. Consider stability 
of such configuration. When the 2N-1 synchronous cells are firing the single cell 
is influenced in an opposite way by inhibition (preventing joining the group) and 
electrical coupling (attracting to the group). Here the total conductance between 
the single cell and the 2N-1 cells is independent of the network size (and equal for 
electrical and inhibitory coupling G gap and G syn   respectively). However the effect of 
electrical coupling will decrease with N due to a decreasing of a voltage difference 
between the membrane potential of the firing group and the cell. Indeed, the voltage 
amplitude of the cells will be damped by their reciprocal inhibition proportionally 
to the conductance G syn (2N – 2)/(2N – 1) which increases with increasing network 
size from 0 (N = 1) to G syn (N infinitive). Thus, the larger N the more stable will be 
a configuration of a single cell and 2N – 1 synchronous cells and the IP pattern less 
probable to be expressed. Thus also the ‘lower’ boundary moves somewhat up as the 
network size increases. This effect is most visible for strong inhibition. Notice that 
a biggest shift of a boundary occurs between N = 1 and 2 (c.f. 2 and 4-cell network, 
Fig. 2C) whereas boundaries for N = 2 and 3 are already very similar (c.f. 4 and 6-cell 
network, Fig.2C). Therefore both the upper and lower boundaries tend to different 
limiting position and between them the domain of coexisting IP and AP will always 
be found, independently of the network size.  
 This prediction was confirmed in simulation of a large-scale fully connected 
network in which 100 relaxation oscillators was coupled in “all to all” fashion in such 
a way that a total synaptic input to a single cell was set within a parameter domain 
corresponding to the area of coexistence of the IP and AP patterns (Fig. 2C1-3). The 
matrix of connectivity within the network is illustrated by white areas that illustrates 
homogenous connections between cells and a black diagonal line which indicates 
a lack of self-connectivity (Fig. 3A1-2). In such a network, in the presence of sto-
chastic input currents, a synchronous activity can be expressed for arbitrary long 
time indicating a stability of the pattern (see time 0 to 200 of simulation, Fig. 3A3). 
Moreover, a transient stimulus (see arrow Fig. 3A3) delivered to network members 
in a proper moment of the cycle was able to reconfigure the network activity into a 
stable AP pattern (see time 300 to 600 of simulation, Fig. 3A3).
 Importantly moreover, introducing a sparse instead of full connectivity according 
to the same principle of scaling of total synaptic input to a single cell did not abolish 
multi-stability of the IP and AP patterns. Indeed, even if the number of synapse existing 
in a fully connected network is reduced to 50% (or less), the network still expresses the 
stable IP and AP patterns and a switch between them is produced by a similar transient 
input (Fig. 3B). However, if number of synapses is reduced to 20% of full connectivity 
stability of the AP pattern is already lost (Fig. 3C) whereas 5% of synapses did not 
provide any more neither stable IP nor stable AP behavior (Fig. 3D).
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Fig. 3. Multi-stability of the IP and AP patterns in 100-cell network. A. Fully connected network. A1-A2 
illustrates distribution of inhibitory and electrical synapses. White areas correspond to existing synapse be-
tween cells of given numbers. Black diagonal lines indicate lack of self-connectivity. A3 Raster-diagram of
100 cells shows a transition between the stable IP and AP patterns. This switching is produced by a transient 
input consisting of excitatory and inhibitory signals delivered to the cells of numbers 1-50 and 51-100, respec-
tively (see black arrow). B-D. Sparsely connected network in which number of connections was reduced to
50% (B), 25% (C) and 5% (D) of full connectivity. The total electrical and inhibitory conductances of a single 
cell were kept constant. The projections of a single cell to the other network members were distributed randomly 
(uniform distribution). Whereas in B3 the stimulation identical as in A3 produces the same switching betwe-
en the IP and AP pattern, it fails to reveal a stable AP in C3. Notice that in D3 the network is unable to express
the stable IP or AP pattern. Parameters G gap = 0.0015, Gsyn

 = 0.0003, stimulus intensity = 1, σ_noise = 0.01
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4. Discussion

In the present study we demonstrate robustness of multi-stability of the IP and AP 
activity patterns expressed by neural networks consisting of the biological cells 
interconnected by inhibitory and electrical synapses. Indeed, this phenomenon was 
present in L-cells belonging to stomatogastric nervous system of crustaceans as well 
as in motoneurons of the neonatal mouse spinal cord. These results, together with 
the previously described occurrence of multi-stable IP and AP patterns in hybrid net-
works consisting of spiking neurons of snail nervous system [15] and auditory cortex 
in the mouse [22] indicate that multi-stability can be expressed in neural networks 
consisting of different types of cells within  the central nervous system. 
 Moreover, we show here that in an oscillatory model network fully intercon-
nected with both fast inhibitory and electrical synapses expression of multi-stabile 
IP and AP behaviors is independent of the network size and occurs always for some, 
well defined, range of coupling parameters. Although such a large-scale network 
generates a large variety of stable activity patterns, number of which depends on the 
number of cells as well as on the synaptic strength (Fig. 2B) the parameter region 
where the IP and AP solutions coexist remains the same for all the network sizes if 
a total synaptic conductance for a single cell is kept constant (see Fig. 2C). 
 These results become significant in perspective of generalization of switching 
rules between multi-stable patterns. Indeed, as shown recently, in the parameter 
sub-space where the IP and AP patterns co-exist the rules for switching between 
them produced by a transient external signal are similar for 2, 4 and 6-cell networks 
[17]. Therefore, our results indicate that since a domain of multi-stability of the IP 
and AP patterns can be always found, the invariance of the switching rules can be 
extended for all network sizes assuming scaling of the coupling parameters mentioned 
above.
 Robustness of multi-stable behavior of the neural networks is further confirmed 
by our preliminary results showing multi-stability of the IP and AP behaviors in large 
scale networks with sparse connectivity (Fig. 3B-C). However, the issue whether 
rules determining switching between the patterns are the same as in the case of full 
connections remains to be investigated. Moreover, in the simulations illustrated in 
Fig. 3 sparseness was introduced in the homogenous way into both inhibitory and 
electrical connections. As a consequence, a connectivity of a given cell with all 
the other cells was reduced equally, independently of cell’s number and therefore 
independently of putative space distribution of the cells. However if we consider 
electrical coupling only between cell bodies as in our model (see Methods) than 
electrical coupling should take place only between the closest neighbors whereas 
inhibitory connections could be realized on long distances. On the other hand, some 
studies underline importance of dendro- and axo-axonal electrical synapses which 
would provide possibility of long distance electrical coupling between cells [7, 23]. 
This would require a multi-compartment cell model which was not considered here. 
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Future study should be undertaken in order to investigate how occurrence of the IP 
and AP patterns as well as switching between them depend on network topology and 
type of connectivity, including different localization of electrical synapses within 
a cell.

5. Conclusions

The present study demonstrates robustness of multi-stability of the basic rhythmic 
activity patterns that can be generated by inhibitory neural network in the presence 
of electrical coupling: full synchrony (IP pattern) and anti-synchrony, consisting 
of alternating activity of two groups of neurons (AP pattern). This indicates that in 
a large variety of neural networks reconfiguration of network activity may be evoked 
by transient input, as for example during a transition from one gait to another which 
can be executed by a transient signal which change instantaneously and simultane-
ously the phase relationships between all the network elements involved in the task 
without changing of any of cellular or synaptic properties of the network. 
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