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The aim of the study was to assess causal coupling between neuronal activity, microvascular hemodynamics and 

blood supply oscillations in the Mayer wave frequency range. An electroencephalogram, cerebral blood 

oxygenation changes, an electrocardiogram and blood pressure were recorded during rest and during a movement 

task. Causal coupling between them was evaluated using Directed Transfer Function, a measure based on the 

Granger causality principle. The Multivariate Autoregressive Model was fitted to all the signals simultaneously, 

which made it possible to construct a complete scheme of interactions between the considered signals. The obtained 

pattern of interactions in the resting state estimated in the 0.05-0.15 Hz band revealed a predominant influence of 

blood pressure oscillations on all the other variables. Reciprocal connections between blood pressure and heart rate 

variability time series indicated the presence of feedback loops between these signals. During movement, the 

pattern of connections did not change dramatically. The number of connections decreased, but the couplings 

between blood pressure and heart rate variability signal were not significantly changed, and the strong influence of 

the decreased blood hemoglobin concentration on the oxygenated hemoglobin concentration persisted. For the first 

time our results provided a comprehensive scheme of interactions between electrical and hemodynamic brain 

signals, heart rate and blood pressure oscillations. Persistent reciprocal connections between blood pressure and 

heart rate variability time series suggest possible feedforward and feedback coupling of cardiovascular variables 

which may lead to the observed oscillations in Mayer wave range. 

Keywords: neurovascular coupling; electroencephalogram; functional near infrared spectroscopy, causal coupling; 

Directed Transfer Function; Granger causality. 
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1. Introduction 

Slow oscillations of frequency around 0.1 Hz were 

detected in different electrophysiological and 

hemodynamic signals; however, the relations between 

them are still elusive. Oscillations of blood pressure 

around 0.1 Hz were first reported in the 19th century by 

Sigmund Mayer,1 and hence are called Mayer waves 

(MW). Interestingly, LFOs, low frequency oscillations 

(0.05-0.15 Hz) centered around 0.1 Hz, were also 

observed in heart rate variability signal2,3,4 and blood 

oxygenation levels.5,6,7 There is also evidence that they 

may modulate the amplitude of EEG 

(electroencephalogram) rhythms.8,9,10  

It is presumed that MW result from an oscillation of 

sympathetic vasomotor tone and are coupled with 

synchronous oscillations of efferent sympathetic 

nervous activity. Their amplitudes possibly reflect 

vascular sympathetic activity since they are most visible 

in response to sympathoexcitatory stimuli. MW were 

also observed in animals with frequencies dependent on 

species. A significant correlation of blood pressure with 

sympathetic nervous activity measured from the 

peroneal nerve (in humans) or from the measurement of 
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renal sympathetic activity (in animals) indicates a 

connection between the sympathetic system and MW. 

Two mechanisms of generating MW were proposed.11 

One theory associates generation of MW with an 

autonomous oscillator located either in the brainstem or 

in the spinal cord. This pacemaker theory is based on 

the observation that the oscillations of sympathetic 

nervous activity and hemodynamic variables near the 

frequency of MW were found in the absence of sensory 

inputs from the periphery. However, the results from 

animal acute experiments and studies on patients with 

spinal cord injuries were not conclusive, and, even if the 

pacemaker of MW was actually operating, its 

feedforward effect on arterial pressure would 

necessarily be modulated by baroreflex response.11 

The baroreflex theory is strongly supported by 

evidence that opening the baroreflex loop abolishes the 

generation of MW.2,3 The models of dynamic arterial 

pressure control aiming to predict MW assume that 

numerous dynamic components and time delays present 

in the baroreflex loop would produce resonant self-

sustained oscillations.11 

However, recent publications consider the possible 

involvement of the central nervous system in the 

generation of 0.1 Hz oscillations.12,13 An interesting 

problem drawing attention of researchers is the relations 

of LFOs occurring in different neurovascular signals, 

since information gained from such studies may help to 

understand the mechanisms of neurovascular control. 

In the studies devoted to that problem, coherence 

analysis was usually applied.6,9,10,14 However, coherence 

is a bivariate measure, so only two signals at a time can 

be considered. The analysis involves estimation of time 

delays from phase differences of selected frequencies.  

However, the variability of phases across the time scale 

makes the estimation of time shifts difficult.10 

Moreover, from coherence analysis, it is not possible to 

find reciprocal connections between time series and the 

existence of such connections is highly probable 

because of the presumed feedback loops in vascular and 

hemodynamic systems. 

The choice of method for estimating the interactions 

between the signals of interest is of primary importance. 

It should be robust with respect to noise and free from 

the common drive effect. It should also be able to 

estimate effective (causal) connectivity and enable the 

identification of reciprocal connections. The Directed 

Transfer Function (DTF)15 based on the Multivariate 

Autoregressive Model fulfills these requirements. DTF 

is a linear method and we cannot exclude non-linearities 

in the investigated system; however, it was 

demonstrated in16 that DTF performs quite well even for 

non-linear signals. On the other hand, non-linear 

measures of connectivity are bivariate (hence, due to the 

common feeding effect, they may produce false 

connections), they are very sensitive to noise and prone 

to systematic errors related to the choice of parameters, 

e.g., the embedding dimension or bin lengths and they 

do not allow identification of reciprocal 

connections.17,18,19 The non-linear methods require long 

stationary data segments (embedding procedure, 

construction of histograms) which makes them 

unsuitable for short signal segments. DTF is robust to 

noise15 and the common feeding effect.20,21 As an 

extension of the Granger causality principle22, it is 

capable of showing causal directed interactions between 

signals and also allows determination of reciprocal 

causal interactions as functions of frequency. DTF has 

been widely applied for the estimation of EEG, ECoG 

and LFP connectivity patterns17,18 and used for finding 

relations between signals of different origin.23  

Herein we applied DTF for estimation of relations 

between LFOs occurring in systolic and diastolic blood 

pressure (sBP/dBP), heart rate variability (HRV), 

changes in concentration of blood oxygenation (HbO) 

and deoxygenation (HbR) and amplitudes of the EEG 

alpha and beta rhythms during awake rest and during a 

motor task. The aim of our investigation was to find 

causal relations between the above-mentioned time 

series in order to gain a better understanding of the 

interrelations between the systems involved in 

generation of these signals and the generation of MW, 

as well as elucidate their role in vascular, hemodynamic 

and nervous systems interactions. 

2. Experiment design 

2.1. Subjects 

Eighteen subjects took part in the experiment. 

Subjects were treated in strict compliance with the 

Declaration of Helsinki. All subjects were informed 

about the experimental procedures and gave a written 

consent. The experiment was approved by the Ethical 

Review Board at the Medical University of Warsaw. 

Eight persons were excluded from the further evaluation 

because of their too weak or too noisy functional Near 
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Infrared Spectroscopy (fNIRS) signal or because of 

artifact abundance. fNIRS signal strength largely 

depends on the anatomical structure of the head, e.g., in 

subjects with optically-thick skulls, the signal is 

strongly damped.24 However, for safety reasons, high-

intensity laser beams cannot be used. Signals were 

excluded from further analysis when the difference 

between the amplitudes during movement and during 

rest was smaller than 3 standard deviations of the signal 

during rest. The analysis was performed on the signals 

obtained from 10 subjects (the mean age was 28.1 years, 

ranging from 24 to 38 years, 5 females and 5 males). 

2.2. Experimental paradigm 

Subjects were placed in a supine position in a dark, 

electrically shielded room with their eyes closed in 

order to avoid blinking artifacts. The movement task 

involved tapping a computer mouse button with the 

right index finger after hearing an acoustic signal. The 

experimental session consisted of thirty 20-second 

periods of movement, each followed by a 30-second 

period of rest. At the end of the session, spontaneous 

activity was recorded for four minutes. 

3. Experimental setup and preliminary signal 

analysis 

3.1. EEG 

EEG electrodes and fNIRS (functional Near Infrared 

Spectroscopy) optodes were fitted in a BioSemi cap. 

EEG activity was recorded from 32 active Ag/AgCl 

electrodes (BioSemi, 10/10 system) fitted over the 

frontal, central and posterior head structures. EEG was 

sampled at 4096 Hz, using a 24 bit A/D converter, 

down-sampled to 256 Hz after band-pass filtering from 

3 to 47 Hz.  

The Hjorth transform (a spatial Laplace filter 

approximation) was applied to the EEG signals. The 

epochs with artifacts were eliminated. The signals were 

zero-phase filtered (Butterworth, order 4) in the 8-13 Hz 

and 13-25 Hz bands for the extraction of alpha and beta 

rhythms respectively. The envelopes of the filtered time 

series were obtained as the instantaneous amplitude. 

The instantaneous amplitude was estimated as absolute 

value of the analytical signal by means of the Hilbert 

transform. The envelopes were high-pass filtered at a 

cutoff frequency of 0.02 Hz (Butterworth, order 4), and 

then the resulting signals were resampled at a frequency 

of 2 Hz. 

3.2. fNIRS 

The custom-made time-resolved fNIRS system25 

used in the study consisted of 2 laser light sources and 8 

detectors. Two picosecond semiconductor laser diodes 

operating at the wavelengths of 687 nm and 832 nm 

generated light pulses at a frequency of 80 MHz. Those 

pulses were delivered to the healthy volunteer’s head 

via 2-meter-long optical fibers. The light re-emitted 

from the tissue was transmitted to the detection module 

using 2-meter-long fiber bundles. The detection module 

consisted of eight photomultiplier tubes and eight time-

correlated single photon counting cards. The source 

fibers and detecting bundles were placed on the 

subject’s head between the EEG electrodes in such a 

way that their receptive fields corresponded to the 

electrodes: C3, C1, Cp3, Cp1 in the left hemisphere and 

symmetrically in the right hemisphere. The distance 

between the source fibers and the detecting bundles was 

3.5 cm.  

The distributions of Times of Flight of diffusely 

reflected photons (DTOFs) were recorded at two 

wavelengths in eight detection channels simultaneously. 

The analysis was based on the zeroth statistical moment 

of the DTOF (the total number of photons) and the first 

statistical moment of the DTOF (the mean time of flight 

of photons <t>). The mean path length of photons was 

calculated using <t> and the speed of light in the tissue 

assuming a refractive index n=1.4.26 Based on the mean 

path length values and the relative changes in the total 

number of the detected photons obtained at both 

wavelengths, the changes in concentration of the 

oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) 

were determined using the modified Beer-Lambert law 

and the wavelength-dependent molar extinction 

coefficients of hemoglobin.27 The changes in the oxy- 

and deoxyhemoglobin concentrations were estimated 

based on fNIRS optical signals recorded with a 

sampling frequency of 10 Hz. Then the high-pass filter 

with cutoff frequency of 0.02 Hz (Butterworth, order 4) 

was applied and the signals were resampled at 2 Hz. 

3.3. ECG/HRV 

ECG signal was recorded at a sampling rate of 200 

Hz from a three lead (RA, LL, RL) unipolar electrode 
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system called Finometer (Finapres Medical Systems 

BV). For detection of R peaks, we have applied an 

algorithm from the toolbox BioSig28 based on the 

method proposed by Afonso29 implemented in 

nqrsdetect procedure. The method relies on a filter bank 

which decomposes the ECG into subbands with uniform 

frequency bandwidths. Heart rate was obtained as a 

reciprocal of the time difference between two 

consecutive R waves in the ECG signal. Then, by means 

of a spline approximation the HRV signal was obtained. 

Similarly to the signals evaluated using EEG and fNIRS 

techniques, HRV was high pass filtered at 0.02 Hz and 

sampled at 2 Hz. 

3.4. BP 

Blood pressure was measured continuously from the 

left index finger by means of Finometer (Finapres 

Medical Systems BV). The signal was sampled at 200 

Hz. Along with the positions of R waves, diastolic and 

systolic pressure values were obtained. Similarly to 

HRV, those time series were high pass filtered above 

0.02 Hz and resampled at 2 Hz. 

3.5. Experimental conditions and types of 

analyzed signal epochs 

We considered three types of epochs in the current 

experiment:  

 

(i) Signals coming from 20 s movement intervals are 

denoted by M. There were 30 M epochs per subject. 

Those epochs were synchronized with respect to the 

movement onset detected by pressing the button. 

(ii) Signals taken from the last 20 s of the rest intervals 

between the movement periods are denoted by R. 

The first 10 s of the rest period were discarded to 

have the same epoch size under all conditions. 

There are 30 R epochs per subject.   

(iii) Signals with a 20 s duration extracted from the 4 

minutes of spontaneous activity recorded after the 

movement/rest session are denoted by S. 30 trials 

were obtained by shifting the 20 s window by 8 s. 

4. Methods 

4.1. Estimation of connectivity 

The quantitative definition of causality formulated 

by Granger22 is based on the predictability of time 

series. Thus, if a series X2(t) contains information in 

past terms that helps predict  X1(t) and this information 

is contained in no other series used in the predictor, then 

X2(t) is said to cause X1(t). Formally, Granger causality 

can be expressed by the two-channel autoregressive 

(AR) model.22 

The AR model can be generalized for an arbitrary 

number of channels. The Multichannel AR model 

(MVAR) for vector X of k signals recorded in time: 

X(t)=(X1(t), X2(t), ..., Xk(t))T can be formulated in 

the following form18:  
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where E(t) are the noise vectors of size k and the 
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Index m stands for the number of MVAR coefficient, i 

stands for imaginary part. H(f) contains information 

about frequency characteristics and relations between 

signals.18  

Based on the properties of MVAR transfer function, 

Directed Transfer Function for an arbitrary number of 

channels may be defined15: 
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DTF describes causal influence of channel j on channel 

i at frequency f. DTF is a frequency dependent causal 

measure of interdependence between signals. It was 

shown30 that DTF is proportional to the coupling 

between the time series, so using DTF, we can find the 

coupling strength in a given frequency band. In the Eq. 

(3) the denominator is dependent on frequency, so the 

spectral characteristic of DTF depends on the frequency 

properties of all the EEG channels, not only of the 

considered channel. To avoid this influence, the ffDTF 

function was introduced.31 In ffDTF, the denominator is 

integrated over frequencies, so the spectrum of the 

estimator ffDTF is not influenced by the frequency 

characteristics of the normalizing factor in the 

denominator.31 
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ffDTF, like DTF, takes values in the range [0, 1]. In our 

calculations we applied the ffDTF function. 

MVAR is a parametric model and the number of its 

parameters should preferably be at least ten times 

smaller than the number of data points. When short 

realizations are only available, as was the case in our 

finger movement task, multiple repetitions of the 

experiment may be used for the ensemble averaging in 

the model fitting procedure.17,30 The determination of 

the model coefficients is based on the estimation of the 

correlation matrix Rij. For each trial (realization)  

indexed  by (r) we calculate the correlation matrix Rij(r). 

Then we average these correlation matrices over the NT 

realizations.  The resulting model coefficients are based 

on the ensemble averaged correlation matrix: 
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where NT– number of realizations, NS– number of data 

points in the window, r – index of realization. 

 

The incorporation of the information from all the 

repetitions of the experiment into one model enhances 

the common features of the signals, which results in an 

increase in the statistical significance of the results. 

 All the seven signals: (1) systolic (sBP) and (2) 

diastolic (dBP) blood pressure, (3) heart rate variability 

(HRV), changes in concentration of (4) oxygenated 

(HbO) and (5) deoxygenated (HbR) hemoglobin, (6) 

EEG alpha rhythm amplitude envelopes (EEG alpha) 

and (7) EEG beta rhythm amplitude envelopes (EEG  

beta) served as the input for the MVAR model. The 

EEG signals from the C3 electrode (overlying the motor 

cortex of the moving finger) and the signals obtained 

from the corresponding fNIRS optode were analyzed. 

To quantify the coupling in the LFO range, we use a 

ffDTF integral in the range of 0.05 – 0.15 Hz, denoted 

by Cji. 

4.2. Statistical analysis 

The theoretical distribution of Cji is unknown; 

therefore, we based statistical inference on the 

comparisons of its values with the distributions of the 

corresponding values obtained for surrogate data, (the 

data with randomized phases) or by means of bootstrap, 

depending on the type of test. We performed two types 

of tests. The first type is designed to test the 

significance of the network couplings present in each 

type of epochs (M, R or S). 

Thus, given a type of epoch, the hypotheses were: 

 

H0:    
sub

surr
jisubji CC = , 

 

H1:     
sub

surr
jisubji CC  , 

 

where  sub  means the estimates averaged over 

subjects, Cji was estimated for the original data for a 

given subject, and was estimated for the surrogate data 

of a given subject. 

The surrogate data were obtained in the usual way, 

by transforming the signals to the frequency domain 

using FFT, randomizing the phases and performing the 

inverse transform. The process of surrogate data 

generation and surr
jiC  estimation was performed 1000 

times for each subject. The estimates obtained in this 

way were averaged over subjects. The set of 1000 

 
sub

surr
jiC yielded the null hypothesis distribution. The 

probability of type I error was obtained as the fraction 

of the distribution greater than the  
subjiC , i.e. observed 

for the original data. Since we performed a family of 42 

tests (combinations of 7 signals) to account for the 

multiple comparisons, those probabilities were further 

corrected by the FDR method.32 

The second type of test was designed to detect 

possible differences in the connectivity between the 

pairs of epochs: M vs. R, and M vs. S. In this case, we 

used the bootstrap paired test. The hypotheses were: 

H0: 0=D  , and alternatively  

H1: 0D ,  

where subjiD ][ =   ,  ji  – averaged across 

subjects, and 
21 type

ji
type
jiji CC −= is the within-subject 

difference in the ji connection. Here, 
1type

jiC   is the 

connectivity estimated for the M epochs, and 
2type

jiC   is 

the connectivity estimated for the R or S types of epoch. 
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The distribution of D corresponding to the null 

hypothesis was obtained in the following bootstrap 

procedure: 

 

1. For a given subject, create a pool of type1 and 

type2 trials (in our case of type: S, R or M) and 

then apply the following procedure: 

 

1.1. Randomly select a subset of 30 trials to be 

marked as type1, 

1.2. Randomly select a subset of another 30 trials to 

be marked as type2, 

1.3. Compute  
21 type

ji
type
ji

boot
ji CC −= , 

2. Average 
boot

ji  across subjects to obtain 

 
sub

boot
jibootD = , 

 

3. Repeat steps 1) - 2) N = 1000 times. 

 

 

The H1 is two-sided, and thus the probability of type I 

error was obtained as the fraction of the bootstrap 

distribution satisfying DDboot  , i.e. more extreme 

than observed for the original data labelling. Since we 

performed a family of 42 tests to account for the 

multiple comparisons, those probabilities were further 

corrected by the FDR (false discovery rate) method.32 

5. Results 

MVAR model was fitted to all the considered 

signals: systolic and diastolic blood pressure, heart rate 

variability, changes in concentration of blood 

oxygenation and deoxygenation, and amplitude 

envelopes of EEG alpha and beta rhythms,  and then 

ffDTFs were estimated according to the Eq. (4). The 

ffDTFs calculated for spontaneous activity (the S 

epochs) averaged over subjects are shown in Fig.1. 

Peaks at frequencies around 0.1 Hz (LFO) and 0.4 Hz 

can be distinguished. The striking feature visible in Fig. 

1 is the high values of ffDTF functions showing 

influence of the sBP, dBP and HRV variables on the 

other variables. The spectral peaks in ffDTFs at about 

     

Fig.1. ffDTFs for spontaneous activity averaged over subjects plotted as a function of frequency. The direction of couplings from the 

variable marked below the column to the variable marked on the left . The standard deviations are marked. The square roots of ffDTFs 

were plotted for better visualization. 
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0.1 Hz were most prominent for those variables.  The 

spectral peaks at 0.1 for HbR showed a strong influence 

of this signal on HbO and also, to somehow a lesser 

degree, on sBP and dBP. According to the literature33, 

we can assume that the peak at about 0.4 Hz is 

connected with respiration. For different subjects the 

maxima of LFO peaks had different positions, so for 

averaged ffDTFs the peak was not always very distinct. 

The ffDTF integrals, called Cji, representing the 

strength of coupling between sBP, dBP, HRV, HbO, 

HbR, EEG alpha and  EEG beta in the LFOs frequency 

range (0.05–0.15 Hz), were computed together with 

their significances in accordance with the procedures 

described in Section 4.2. 

The values of the couplings during spontaneous 

activity are presented in Table 1, and a graph illustrating 

the obtained causal relationships is shown in Fig. 2. The 

prominent features of interactions are strong reciprocal 

couplings between sBP and dBP, where the influence of 

sBP on dBP is stronger than vice versa. Reciprocal 

connections of comparable strengths are also prominent 

between sBP and dBP and HRV. This kind of 

interaction indicates the existence of feedback loops. 

The directed connections from EEG alpha and EEG beta 

toward the other variables are much weaker. 

 

 

 

 

 

Table 1. The averaged strengths of couplings in the range of 0.05-0.15 Hz for spontaneous activity. The significant 

interactions are printed in bold on a gray background. FDR is controlled at the 5% level. The direction of interaction from 

the variable marked below the column to the variable marked on the left.  

 

EEG Alpha  0.30 0.32 0.54 0.78 1.11 1.05 

EEG Beta 0.31  0.42 0.70 0.67 1.22 0.99 

HbO 0.30 0.35  1.47 0.61 0.86 0.80 

HbR 0.32 0.27 0.61  0.71 1.09 1.12 

HRV 0.20 0.18 0.21 0.46  0.92 1.05 

sBP 0.19 0.19 0.25 0.43 1.69  1.04 

dBP 0.25 0.23 0.28 0.56 1.70 1.19  

 EEG Alpha EEG Beta HbO HbR HRV sBP dBP 

 

 

 

Table 2. The averaged strengths of couplings in the range of 0.05-0.15 Hz for rest activity. The significant interactions are 

printed in bold on a gray background. FDR is controlled at the 5% level. The direction of interaction from the variable 

marked below the column to the variable marked on the left. 

 

EEG Alpha  0.43 0.36 0.54 0.55 0.93 0.81 

EEG Beta 0.23  0.34 0.46 0.56 0.88 0.89 

HbO 0.22 0.27  1.45 0.61 0.82 0.89 

HbR 0.21 0.25 0.58  0.53 0.69 0.70 

HRV 0.13 0.14 0.17 0.26  0.63 1.15 

sBP 0.12 0.13 0.20 0.29 1.74  1.04 

dBP 0.13 0.14 0.20 0.33 1.75 0.87  

 EEG Alpha EEG Beta HbO HbR HRV sBP dBP 
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Fig. 2. Scheme showing significant couplings for spontaneous 

activity calculated  using the approach described in Section 

4.2. The thickness of the arrows represents the strength of 

connections. The thickest lines (relative thickness 4) denote 

the coupling values greater than 1.42, the next thicknesses 

correspond to the values in the ranges of 1.09 – 1.42, 1.08-

0.75 and below 0.75. For the exact values of couplings  refer 

to Table 1. 

 

Inspecting the graph, it is easy to notice that sBP 

and dBP drive HbO , HbR, EEG alpha and EEG beta. 

The HRV signal also exerts an influence on EEG alpha 

and EEG beta. The influence of HbR on EEG alpha and 

EEG beta is stronger than the influence of HbO. HbO 

and HbR are connected reciprocally; however, the 

influence of HbR on HbO is much stronger than vice 

versa. 

The values of couplings for the R and M periods are 

shown respectively in Tables 2 and 3. For the R periods, 

the overall scheme of couplings is more similar to the 

one obtained in the M condition than in the S one . In 

particular, the influence of EEG alpha and EEG beta on 

the other variables became insignificant. The pattern of 

connections for the M period is illustrated in Fig. 3.  

Next, we compared the paired coupling changes in 

LFO between the M and R epochs, and then between 

the M and S epochs. Practically no significant 

differences in the couplings between the M and R 

epochs were found; however, some significant 

differences were found between the M and S epochs 

(Table 4 and Fig. 4). 

 

 

 

 

Fig.3 Scheme showing significant strengths of couplings for 

movement calculated using the approach described in Section 

4.2. The thickness of the arrows represents the strength of 

connections. The thickest lines (relative thickness 4) denote 

the coupling values greater than 1.42, the next thicknesses 

correspond to the values in the ranges of 1.09 – 1.42, 1.08-

0.75 and below 0.75. For the exact values of couplings  refer 

to Table 3. 

6. Discussion 

Several authors have studied the relationship 

between vascular, hemodynamic and 

electrophysiological signals in the LFO range; however, 

their studies were based on bivariate methods which 

considered only two signals at a time.  

E.g. Nikulin et al.14 investigated the relationships 

between ultra-slow (0.07-0.14 Hz) oscillations (MUSO) 

occurring in EEG and metabolic variables. The authors 

reported positive coherences between MUSO, HbO 

levels and blood pressure during rest and when a subject 

was kept in a tilted position. They suggested an extra-

neuronal origin of MUSO reflecting cerebral 

vasomotion. 

The works of particular interest in the context of our 

results are those where directional interactions between 

metabolic and electrophysiological signals were 

considered. Obrig et al.6 investigated spontaneous low 

frequency oscillations in the visual cortex. The authors 

reported that HbR changes preceded HbO oscillations, 

which is in agreement with our results (Fig.2 and Fig.3) 

showing a stronger influence of HbR on HbO than vice 

versa. In that work positive coherence between arterial 

BP (aBP) and HbO and HbR was also observed. 

Directional interaction between aBP and HbR (aBP 
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preceding HbR) was found; however, no influence of 

aBP on HbO was reported.  

Pfurtscheller et al.9 studied LFO around 0.1 Hz in 

cardiovascular and cerebral systems for spontaneous 

activity and during finger movement. For spontaneous 

activity, phase shifts between dBP and HRV varied 

depending on subject, but BP was always leading. 

During movement the phase shifts increased and 

became even more variable. Also, dBP temporarily 

preceded prefrontal HbO concentration levels. 

In Ref. 10 coupling between EEG and hemodynamic 

signals during rest and movement was considered. 

Cross-spectral analysis and time-frequency methods 

were applied. Large inter-subject variability was 

observed. The reported results indicated that the positive 

HbO peaks preceded the central EEG beta and alpha 

power in the majority of subjects. During voluntary 

movements the results were similar and HbO peaks 

preceded EEG power maxima; however, the phase shifts 

between the signals were smaller.  

 

 

Table 3. The averaged strengths of couplings in the range of 0.05-0.15 Hz for movement activity. The significant 

interactions are printed in bold on  a gray background. FDR is controlled at the 5% level. The direction of interaction from 

the variable marked below the column to the variable marked on the left.  

 

EEG Alpha  0.28 0.31 0.42 0.44 0.72 0.71 

EEG Beta 0.18  0.38 0.48 0.59 0.73 0.78 

HbO 0.16 0.21  1.39 0.58 0.73 0.89 

HbR 0.15 0.16 0.68  0.57 0.66 0.80 

HRV 0.10 0.13 0.25 0.24  0.84 1.15 

sBP 0.12 0.12 0.27 0.32 1.62  1.16 

dBP 0.14 0.14 0.31 0.34 1.59 1.09  

 EEG Alpha EEG Beta HbO HbR HRV sBP dBP 

 
Table 4. The differences  in the couplings between movement and spontaneous activity. The significant differences are 

printed in bold. The couplings that were significant for spontaneous activity are marked with a gray background. FDR is 

controlled at the 5% level. 

 

EEG Alpha  -0.02 -0.01 -0.12 -0.34 -0.39 -0.34 

EEG Beta -0.13  -0.04 -0.21 -0.08 -0.49 -0.21 

HbO -0.14 -0.13  -0.08 -0.03 -0.14 0.09 

HbR -0.17 -0.11 0.07  -0.14 -0.43 -0.32 

HRV -0.09 -0.05 0.04 -0.21  -0.08 0.10 

sBP -0.07 -0.07 0.02 -0.11 -0.08  0.13 

dBP -0.11 -0.09 0.03 -0.22 -0.11 -0.10  

 EEG Alpha EEG Beta HbO HbR HRV sBP dBP 
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Fig.4 Scheme showing changes of couplings between movement and spontaneous activity. The solid lines represent the couplings that 

did not change significantly with respect to spontaneous activity and the red dashed lines denote the couplings that  significantly 

decreased during movement. For the values of changes in the couplings refer to Table 4. 

 

Summarizing the present literature, we can state that 

the reported results correspond well with ours in respect 

of directionality of interactions; however, they only 

concern fragmentary relationships between signals. The 

formalism applied in them did not allow identification 

of reciprocal connections and above all, it was unable to 

grasp the whole scheme of interactions between the 

relevant time series. 

Considering the pattern of connections for the 

spontaneous activity, the most prominent feature is 

driving oscillations in HbO and HbR concentration as 

well as EEG alfa and EEG beta by blood pressure. 

Indeed, MW were first identified as oscillations of BP 

and they are considered to be systemic fluctuations due 

to the vascular autoregulation dynamics. 

The MW generation mechanisms are in dispute. One 

of the proposed mechanisms assumes the autonomous 

oscillator located either in the brainstem or in the spinal 

cord. The other proposed mechanism concerns the 

action of the baroreflex loop.11 Our results support the 

second hypothesis. The remarkable feature of the 

connections between BP and HRV is a strong reciprocal 

coupling between those signals. The identified network 

encompassing sBP, dBP and HRV appears to be an 

important structure in generation of MW and   seems to 

act as an autoregulation system to initiate cardiac 

autonomic adjustments. The specificity of connectivity 

between HRV and BP does not support the hypothesis 

that heart rate oscillations buffer Mayer waves11 rather 

than reinforce them.  

MW connected with blood pressure oscillations 

seem to be the primary cause of amplitude fluctuations 

of alpha and beta rhythms as well as the changes in 

concentrations of HbO and HbR. Considering the 
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coupling between HbO and HbR, we can observe a 

stronger influence of HbR on HbO than vice versa. It 

seems logical that the rise in deoxygenated hemoglobin 

will in turn cause an increase in HbO. This increase may 

be possibly due to the influence of HRV since according 

to our results this variable is coupled to HbO and HbR. 

The scheme of connections during movement does 

not vary practically with respect to the one observed for 

rest (Table 2) This observation is not surprising. 

Functionally, the state of subjects during rest periods 

when they are attentive and anticipating stimulus is 

quite different from their state during longer periods of 

spontaneous activity. During short periods of rest, the  

activity of the system is not stable enough to allow the 

development of the type of patterns with strong 

couplings between all the variables observed during 

longer periods of spontaneous activity. The movement 

comes as a perturbation of the spontaneous system and 

causes breaking or weakening of the bonds between the 

variables. Those bonds are not reconstructed during 

short periods of rest. The signals changes during 

movement with respect to rest involve a slow rise in 

HbO, a decrease in HbR (which lasted about 25 s) and a 

desynchronization of EEG alpha and EEG beta. These 

phenomena described in Ref. 34 have spectral 

characteristics below the MW frequency range which 

we are considering here, so they are not reflected in the 

present results. The slow evolution of HbO and HbR 

and amplitudes of EEG alpha and EEG beta in rest and 

movements periods were modulated by oscillations of 

frequency around 0.1 Hz, similarly for both conditions 

therefore it is not surprising that when oscillating 

activity is considered the differences are hardly 

observed. 

The differences between spontaneous activity and 

movement are shown in Table 4 and illustrated in Fig.4. 

Most of the couplings observed for spontaneous activity 

can be observed also during movement. The sBP, dBP 

and HRV are connected by strong reciprocal bonds. 

Changing the coupling pattern from S to M causes 

weakening or breaking of certain connections. The 

influence of EEG alpha and EEG beta on the other 

variables which were not strong even during 

spontaneous activity disappears. This can be explained 

by the effect of desynchronization of those rhythms 

during movement. The driving of EEG alpha 

fluctuations by dBP and sBP is significantly reduced. 

There is also a decrease in the influence of HbR on 

HRV. However the influence of HRV on HbR stays on 

the same level during movement and spontaneous 

activity. A decrease in the influence of sBP oscillations 

during movement on EEG alpha, EEG beta and HbR is 

understandable since the intrinsic oscillations in the 

resting system are usually suppressed by external 

perturbations. Another interesting result of our study is 

the identification of strong reciprocal couplings between 

sBP, dBP and HRV constituting a circuit which is acting 

during spontaneous and movement activity.  

We considered several variables involved in the 

control of brain-heart autoregulatory mechanism. 

However, the system is highly complex and there are 

other variables not recorded by us which possibly have 

to be taken into account. In particular, information about 

sympathetic nerve activity (difficult to measure in 

humans) would be beneficial for understanding MW 

generation mechanisms since neurovascular signals are 

under the control of the autonomic nervous system, 

especially the efferent sympathetic system (including 

baroreceptors) which modulates circulatory and 

hemodynamic variables.33 

An important aspect which has to be taken into 

account is the fact that our experimental design did not 

allow the recording of signals from subcortical 

structures that cannot be probed by the NIRS technique 

and might possibly influence the relationships between 

the investigated variables. The functional magnetic 

resonance technique (fMRI) allows the study of 

neurovascular couplings also in subcortical brain 

structures. Recently, some valuable contributions 

concerning the blood oxygenation level-dependent 

(BOLD) signals have been considered in the aspect of 

LFO in the 0.1 Hz range. 12,13,35,36 

Tong et al.36 found a strong correlation between 

LFOs measured at the periphery by the NIRS technique 

with the BOLD signals and suggested a global 

circulatory origin of LFOs in the human brain. They 

postulated that the resting state networks may to some 

extent reflect vascular anatomy associated with systemic 

LFOs, rather than neuronal connectivity. 

On the other hand, the works12,13 aimed at finding 

the distinction between neural and vascular BOLD 

oscillations. In12 by means of phase locking index, for 

oscillations at around 0.1 Hz in BOLD signals time 

delays were found between the precentral gyrus (PCG) 

and insula for rest and movement. About half of the 

participants revealed in PCG time delays distinctive for 
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neural BOLD oscillations. In the resting state they were 

significantly associated with ~0.1 Hz heart rate 

variability.  

Two clusters of phase coupling between the slow 

BOLD oscillations at 0.1 Hz and the heart rate interval 

oscillations in the midcingulum were found, one 

representative of neural and the other of vascular BOLD 

oscillations.13 The results of the above publications 

indicate the influence of the “central pacemaker” 

oscillations on HRV. 

Our results provided a comprehensive scheme of 

interactions between electrical brain and heart signals, 

hemodynamic variables and blood pressure oscillations. 

We demonstrated that in the frequency range around 0.1 

Hz HRV, sBP and dBP signals are tightly coupled by 

reciprocal connections which may lead to the observed 

oscillatory behavior; however, the mechanisms of 0.1 

Hz oscillations may be influenced by the cerebral 

structures. Further research is needed for elucidation the 

possible role of brain structures in MW generation. 

We may conclude that the generation and 

propagation of the MW in the cardiovascular and 

neurovascular systems result from the complex 

mechanisms of vascular and neural origin involving 

several mutually interacting variables. 
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