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A method of image equalisation that reduces non-uniformity of light distribution caused by 
optical devices and dust on camera sensors is presented. The method explores non-unifor-
mity which occurs in archival images captured by a typical optical set which consists of a 
light microscope and a digital camera. A sufficient number of images with low density of 
foreground objects has been used to extract a global map of non-uniformity of the particular 
microscope and camera. The proposed method consists of two steps: – (1) extraction of the 
map of non-uniformity based upon a set of chosen images and – (2) correction of images 
acquired by the optical set. The global map is created based upon a modified value layer, 
the third layer of HSV colour space. The proposed method has been tested on  images of 
immunohistochemically (IHC) stained samples of  a biopsy tissue, and it has been validated 
using an image segmentation method developed earlier. The results of the light distribution 
equalization, as well as the equalized images segmentation turn out to be more similar to 
the reference method results (namely the manual counting results), than the results of the 
original images segmentation. The equalization method can be used for other types of 
images, but all of them should be acquired by the same optical set. 

K e y w o r d s: immunohistochemically stained images, image light distribution, image 
equalization

1. Introduction

Immunohistochemically (IHC) stained tissue samples are used by pathologists 
to evaluate various types of cancer. For example, the aggressiveness and the 
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prognosis of follicular lymphoma and breast cancer tissue sections are evalu-
ated using the IHC images [1, 2] stained with DAB (3,3’-diaminobenzidine) and 
contra-stained with haematoxylin (DAB&H) [3, 4]. The score of immunopositive 
cells’ nuclei (brown objects) in the assumed area of interest and the architecture 
of the tissue sample are taken into account during the evaluation process. It can 
be done directly with a microscope or using a previously collected set of digital 
images of samples. Objects in digital images can be counted with [5–11] or with-
out [12–14] a support of image processing methods which automate completely 
or incompletely this time consuming subjective work. The stained samples should 
be evaluated directly under a microscope, according to the WHO procedure [1, 2]. 
But with a development of image processing technologies, the direct observation 
of the samples can be supported by image analysis and processing methods us-
ing the digitalized version of the samples in both cases: in the case of cytological 
[15–19] and histological [4, 20–22] diagnosis and research. Defined so far image 
processing methods are not sufficiently effective yet, but further work on them 
should bring better results. The digital version of  the samples allows pathologists 
not only (1) to come back to the chosen parts of a sample and (2) to make remote 
analyses by more than one lab worker (using tele-pathology facilities) but also (3) 
to create a good documentation of patient’s illness history. Moreover, the archival 
images can be an interesting study subject, e.g. in the patient survival analysis. 
Computer-assisted cancer diagnosis, prognosis and treatment become the future 
of pathologist’s and oncologist’s work. 
 The method of improvement of the DAB&H stained digital images, which have 
been acquired with a particular optical set, is proposed in the paper. It is extremely 
important when computer-assisted counting methods are used, as colours allow to 
differentiate between immunereactive and not immunoreactive cells’ nuclei.
 The problem of digital image quality improvement is an extremely important 
part of image standardization process when dealing with virtual microscopy, what is 
discussed by Kayser et al. [23–25] and other authors [9, 20, 21, 26, 27]. Various correc-
tion methods are proposed in the literature. Some of them require a specific scene that 
usually has to be uniformly lit [28–32], others use a single image and create a function 
that is fit to this specific image using various methods of optimization [33, 34]. There 
are also methods that use sequences with overlapping scenes [35, 36]. 
 Rolling Ball method [37], the most commonly used correction method, is 
available in ImageJ as a tool for  background subtraction. It uses morphological 
operations to normalize the background of a single image and obviously works well 
under specific restrictions in the distribution and density of objects and in specific 
background variability. 
 The method proposed in the paper is a tool for creation a map of non-uniformity 
in light distribution across an image plane based upon a set of more than 100 digital 
microscopic images captured using a particular camera connected with a microscope. 
The system used to collect the images is not available currently in its original shape 
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(e.g. it is under construction). Hence, the correction methods that require a strictly 
defined scene and the methods that require overlapping scenes cannot be used. Those 
methods which use only one image to build the whole model of light distribution are 
suitable, if foreground objects of an image are loosely distributed and their size is 
small enough in comparison to changes of the image background intensity. Then it is 
possible to find a structural element size that erase the foreground objects without blur-
ring the background intensity changes. However, there may be some great dust spots 
on optical elements of the capturing set which will not be reduced by this method.
 In the proposed method the map of non-uniformity in  the light distribution is 
calculated based upon a set of images with low or medium density of foreground 
objects, which can touch each other and may even  constitute big nuclei clusters. As 
the construction set contains many images with random foreground objects location, 
the information that any particular point on the map belongs e.g. to the background, 
repeats itself in several images. In all images the method allows to detect small un-
derexposed areas, which indicate the presence of contaminations in the optical path 
and in the camera sensors area.
 The map of non-uniformity can be used to correct every image captured by the 
same optical set.

2. Biological Background

Quality of digital images depends on: both: (1) the process of image capturing, and: 
(2) the complicated and multistage process needed to obtain a immunohistochemi-
cally stained tissue sample.  
 The process of samples preparation starts from creation of a paraffin-embed-
ded block from a tissue taken from a patient’s body. Next, it is sectioned normally 
in a range from 2 to 6 μm  and put on a glass. The slices are stained immunohisto-
chemically with antibodies merging the protein which is specific for cells’ nuclei 
in particular cancer. In this investigation the indirect staining is used, in which two 
types of antibodies are needed: (1) the first one is directly connected with the cel-
lular protein (Ki67 or FOXP3), and (2) the second one, conjugated to a horseradish 
peroxidise (HRP) labelled polymer, is connected to the first one. The reaction of the 
enzyme with the substrate-chromogen DAB results in a brown colour precipitate at 
the antigen site (in this study DAB stains the immunopositive nuclei brown). Then 
the immunonegative nuclei are contra-stained blue with haematoxylin. Two images 
captured experimentally are presented in Fig. 1.
 Some of the prepared samples are very pale (all colours are unsaturated, whitened 
as in Fig. 1A), while others are coloured intensively (with saturated blue, brown or 
both of them, as in Fig. 1B), what emphasizes the problem of how to set the camera 
settings to capture the homogeneous images from a set of nonhomogeneous sam-
ples. Intensity of the colours in a digital image depends on the process of staining, 
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Fig. 1. Images and maps examples:
• image A – with blue coloured cells’ nuclei only – immunonegative objects only; 
• image B – with blue and brown coloured cells’ nuclei – immunonegative and immunopositive for which 

yellow marks imposed by an operator using Image-Pro Plus software;
• image E – upper left corner of image B to show dim corners and a similarity of dark blue and dark 

brown nuclei in this region;
• C and D – image A shown as 3D function plot from two different elevation angles with pixel values 

shown according to the colour scale presented under images;
• F, G and H – shows 3D plot of maps of light distribution presented in images: I  J and K;
• I, J and K – show 3 maps of light distribution constructed as the grey scale images F – by the proposed 

method without the final blurring, G – with the final blurring an H using the rolling ball method.
All maps and 3D plots of light distribution in the optical device show an uneven illumination in corners 
and light spots in the middle. All of them are rescaled (in order to highlight the vignette pattern), so that 
the maximal value of each map gets the maximal displayable value and the minimal value gets value 
0, while the range of grey scale levels is from 1 up to 70
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described above, on the microscope (optical properties of the light pathway and the 
light itself) and the camera quality and on their actual settings (mainly on the chosen 
time of exposure). Setting of the camera ISO, white balance, and deep of field can 
unify some colours or shadows (e.g. colour of the immunoreactive object) over  others 
(for example background or contra-stained objects). 
 Variation in the colours of the immunoreactive nuclei in the analysed archival 
set of images is large, from intensive orange, through intensive brown to dark brown
(see Fig. 1E). That is typical when the number of chemical substrates is not stechio-
metric. A close similarity between the dark brown colour of immunopositive nuclei 
and the dark blue colour of immunonegative nuclei can be observed. Vignette (dim 
corners), introduced into the digital images by the optical set, makes  differentia-
tion between both types of nuclei very difficult, as it is hard to distinguish dark blue 
objects from dark brown ones crowded in the corners.
 Proposed method which would reduce the nonhomogeneity in the light distribu-
tion, which is visible as vignette and artefacts (spots on the optical devices) should 
be verified counting the immunoreactive nuclei both (1) manually with a support of 
computer and (2) automatically using image processing methods with and without 
non-uniformily reduction. 

3. Images 

The digital images of the IHC samples have been provided by Hospital de Tortosa 
Verge de la Cinta, Spain, as a collection of patients’ data from years 2005-2010. The 
microscope used to capture the images – Leica DMLB2 (LeicaMicrosystemsWetzlar 
GmbH, Wetzlar, Germany) was connected with the digital camera DFC320 (Leica 
Microsystems Digital Imaging, Cambridge, UK). Each of the collected images 
(1550 x 2088 pixels) shows a rectangular part of a sample (size 3.8 mm x 2.8 mm). 
The images have been stored as tiff, 24 bits pixels (8 bit/channel).
 Patient samples already diagnosed by pathologist directly counting the 
brown-stained nuclei located in an assumed area of each sample and evaluating 
the tissue architecture was used for image processing analysis. Then for each 
sample a series of the digital images of several locations has been captured for 
the research purpose. 

4. The Proposed Method 

The proposed algorithm consists of two modules: the map creation module and the 
image correction module. 
 The map creation module uses those images from the big given image set which 
have a low or medium density of foreground objects, that is both immunopositive 
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and immunonegative cells’ nuclei dispersed or clustered. In this case, 100 images 
with density of the objects similar to that observed in Fig. 1A and B have been used 
to create the map which shows characteristics of a light distribution presented in 
Fig. 1 from F to K. The presented method uses saturation layers of images to separate 
information about the clear background location and value layers to detect informa-
tion about the lighting position in images. 
 The module of image correction improves a single image using the map produced 
in the first module. It can correct any image captured with the particular optical set.
 Both modules are discussed below in detail.

4.1. The Map Creation Module

The map creation module  consists of the following steps:
I. For each image from the images classified to the set of n images used to construct 
the map:
 1. The colour space of each image i is converted from RGB (red, green, blue) 

to HSV (hue, saturation Si , value Vi)
 2. Channels Vi and Si are selected (where i is the image number in the set and 

can take a value from 1 to n)
 3. Channel Vi is modified by removing saturated points based upon a test of Si 

layer (for the images that have saturation in the range from 0 to 1; pixels with 
saturation less than 0.1 are suppressed to black).

II. Next:
 1. Matrix q and empty map M of the size of a single 8-bit greyscale image are 

created (range (x,y))
 2. For each position (x,y) a sum of values of V layers and the number of non-

-modified layers (how many layers in this position have value different than 0) 
are calculated and saved in matrix q

 3. The result of dividing the sum by corresponding q(x,y) is saved in map M 
according to the equation:

   M(x,y)=
Vi(x, y)

q(x, y)
i=

n

1
∑

 (1)

 4. Final map M, which resembles an 8-bit deep greyscale image, is additionally 
slightly blurred by the LowPassGaussian filter to make it smoother.

 The final map constructed for  the archival images (see section 3) is presented 
in Fig. 1J. The presented map is rescaled in order to highlight the vignette pattern. 
The maximal value of the map gets the maximal displayable value and the minimal 
value of the map gets value 0, while in the microscopic images the range between 
the mean of V-channel value in the corners and in the centre is about 70 levels. The 
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map presented in Fig. 1F is textured, because it is before the smoothing step of the 
procedure (see II 4).

4.2. The Image Correction Module

The correction module uses the map M shifted and inverted to correct image I cap-
tured with the optical device, characterized by the map M. It is performed in the 
following steps:
 1. Values of map M are shifted to make the minimal value of M equal 0:

   Mshift (x,y) = M(x,y) – min(M)  (2)

 2. The colour space of image I is converted from RGB to HSV
 3. The value layer (VI) of image I is modified by adding a negation of Mshift

   VII = VI + negative(Mshift) (3)

 4. The value layer (VII) is modified by adjustment to the whole range of the 
grey scale (allowing not more than 1% of pixel would become saturated)

 5. H and S channels are combined with the modified value layer (VII) and the 
image is converted back to RGB.

5. Evaluation of the Proposed Image Correction Method 

Evaluation of the proposed correction method is done on various levels: (1) by visual 
assessment of maps constructed by different methods, (2) by comparison of the results 
of manual counting to automated counting done with the method proposed earlier, 
and (3) by examining the effectiveness of the correction method in the images of 
various characteristics. This last examination is described in the next section while 
the previous below. 
 The map of the light distribution calculated using the proposed method, based 
upon 100 selected images (the creation set) is compared to several maps created us-
ing an algorithm, called Rolling Ball, and implemented in ImageJ [37]. The Rolling 
Ball algorithm, which is designed to create a single image using only this image, has 
been used to improve several images chosen from the creation set. The images have 
been chosen according to the method assumptions – the images with a small amount 
evenly distributed foreground objects are expected. The Rolling Ball algorithm 
subtracts a background from an image. The background is created based only upon 
the information from the image. Hence, correction works well only if fluctuations 
of the background intensity are low and the largest foreground objects or clusters of 
foreground objects are much smaller than the fluctuations. It is because the size of 



70 U. Neuman et al.

the maximal foreground object decides about the size of a structural element used by 
the Rolling Ball method for morphological closing and opening operations [38–43]. 
The operations remove the objects from the image and interpolates values of the 
background under the  disappearing objects based upon the nearest neighbourhood 
background. An image and it’s background map constructed based upon it using the 
Rolling Ball method calculated for V-layer of this image are presented in Fig. 1A 
and K respectively while Fig.1 H presents the map as the image function.
 The results of the Rolling Ball algorithm, presented in Fig. 1K and H are juxta-
posed with the final map constructed by the proposed method Fig. 1 J and G. Visual 
comparison of both maps shows a similarity of their general pattern with the dim 
corners and the intensively brightened centre, while their smoothness is different. 
The final map obtained using the proposed method is smoother in comparison to the 
Rolling Ball map, where size and shape of the used structural element introduce the 
specific pattern. All images in Fig. 1 are rescaled using the analogous linear histogram 
enlarging as it is described above. 
 Exact visual inspection of the Rolling Ball map shows that it contains a pattern 
resulting from a chosen shape and size of the structural element used in the mor-
phological operations. It means that a different shape and/or size of the structural 
element would produce different results. As the shape and/or size of this element 
are strictly dependent on the shape and/or size of the largest foreground objects the 
method would only be efficient for a subset of the archival images. Many images 
we deal with are complicated, with medium or even high density of objects mostly 
clustered.
 It is clearly visible that both the Rolling Ball method results and the proposed 
method results detected a similar vignette pattern introduced by the optical set. Both 
methods detect a similar difference (in location and values) between the intensity 
of the centre and the corners of the images. But the proposed method, thanks to the 
averaging process of about 100 images, results with the more uniform and smooth 
map and it can deal with more complicated images, e.g. images having medium den-
sity of objects or even clusters of objects. Finally the result of the proposed method 
can be used to improve even very complicated images, which have been excluded 
from the map creation module. So, the method uses images with low or medium 
density of objects, even with clusters, to create the map and then uses it to correct 
all images, both included and excluded from the set used to create the map of the 
light distribution.
 The results of the proposed correction method are then evaluated using an 
automated segmentation method earlier prepared and described in [44]. The im-
munoreactive nuclei in the corrected and uncorrected images are counted using the 
automated segmentation  method, which is based upon colour adaptive threshold 
operations [44–47]. First, the objects are thresholded. Then, the objects bigger than 
the assumed size are divided according to their shapes using the watershed method 
and several basic morphological operations [48–54].



71Equalisation of Archival Microscopic...

 Average results of triple manual nuclei counting, done by two experts (mini-
mization the intra- and inter- observer variability), are used as the reference for 
automated counting. Image-Pro Plus (Media Cybernetics INC) software has been 
used by the experts to count brown objects in the uncorrected images. This software 
offers a manual supporting tool to mark objects which should be counted. Fig. 1 B 
and C present brown nuclei marked manually. 
 The number of the selected brown objects, using the automated method for both 
uncorrected and corrected images, is compared to the manually obtained results. If 
the counting result obtained for a corrected image is closer to the manual counting 
result than the result obtained for the uncorrected one,  the correction method is 
suitable and positively influences the image appearance in the context of the colour 
segmentation of brown objects.  Otherwise, if the manual results are close to the 
results obtained for the uncorrected image, the proposed correction method is not 
effective.
 In general, no influence and positive influence of the image correction perform-
ance are observed in 66% of the tested images, mostly because the number of false 
negative cases after the image correction decreases, while the negative influence of 
image correction is observed in 34% of the images.

6. Deep Analysis of Effectiveness of the Proposed Method 

Evaluation of the proposed method of the IHC stained image correction described 
above shows that the method is efficient in some but not in all cases. It is interest-
ing for which images the correction improves results of automated counting of the 
immunoreactive nuclei. As the automated segmentation method extracts an object 
according to its colour, it seems that the colour saturation is the crucial factor which 
influences the results. 
 The set of 50 images has been divided into three subsets: (1) the subset of the 
very pale images (whitened), (2) the subset of the images with saturated colours, and 
(3) the subset of the dark low saturated images (blackened), according to the mean 
values of saturation layer (channel) of the HSV colour model. The mean value and 
the standard deviation of the  image saturation have been calculated for each image 
from the test set and its value has been 180 ±13. If an image mean saturation is in the 
range given by the general mean plus minus the standard deviation, it is categorized 
as the saturated image. Otherwise it goes to the set of the dark (low saturated and 
low share of white) or pale (low saturated and whitish) images. 8 (16%) from 50 
images has been categorized as pale, 33 (66%) as saturated and 9 (18%) as dark. 
 Figure 2 has been introduced to show trends of the results in each group. There 
are three bars presented in this figure, which correspond to three subsets: the left one 
corresponds to the subset of the dark images, the middle one to the pale images and 
the right one to the saturated images. Each bar consists of three parts which differ 
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in colour. The light grey part corresponds to the percentage of the improved images, 
for which the amount of brown objects calculated after the image correction is closer 
to the manual counting results, than for the uncorrected images. The dark grey part 
corresponds to the percentage of images for which an influence of the correcting 
method is not essential, while the middle grey part corresponds to the percentage of 
images for which the correction appears to be useless.

Fig. 2. The results for each subset of the images: the left bar for the subset of the  dark images, the 
middle bar for the  pale images and the right bar for the saturated images; the shades of grey colour 
subsections correspond to  the percentage of various effectiveness of the method: light grey colour cor-
responds to the percentage of the images highly improved, the dark grey colour subsection corresponds 
to the percentage of the images for which the correction has not influenced the result of object counting 
and, finally, the middle grey colour subsection corresponds to the images for which results have been

 unimproved

 In general, for 30–38% of the images the correction appears to be useless, while 
for the rest the use of correction is justified. 

7. Conclusions

The digital images of tissue samples stained by IHC used to diagnose a cancer tissue 
section, to determine the prognosis and the appropriate treatment should be as good 
as possible, regardless of whether they are evaluated both by a human and by an 
automatic method. So, a big effort should be put to prepare the samples and capture 
the images. During the process of capturing the most important for the image quality 
is to adjust the deep of field and to select an appropriate exposure. A badly selected 
exposure results in pale or dark images (whitened or blackened), what causes addi-
tional problems with automated counting the immunopositive objects. The collection 
of the archival digital images, which constitutes documentation of the interesting 
cases, could be improved using the method proposed in this paper. 
 Direct observation with microscope allows to penetrate the deep of field in 
a sample better  than with a digital camera, particularly if a pathologist uses the 
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micrometric knob interactively. But the digital image captured by a camera, ex-
amined on a computer screen, despite showing a stable narrow deep of field gives 
other advantages. Pathologists may be supported or even lead by software, which 
performs the image processing, selection of information, highlighting relations 
between the objects, measuring and counting the detected objects automatically. 
 The proposed method of image correction improves quality of the digital images 
by removing vignette – dim corners – caused by some nonuniformity in the light 
distribution in the microscope and camera optics. Due to vignette, dark blue nuclei 
in the corners become nearly black and can be confused with brown nuclei. Also 
dust on the sensors can introduce spots wrongly classified as nuclei. The proposed 
method of the image improvement works as adjusted to the enhancement of mean 
local contrast. The image improvement is more visible in the saturated (well exposed) 
and pale (overexposed) images than in the dark (underexposed) images. The dark 
images have been captured with a big lost of information about colour of foreground 
objects and the correction method cannot supply costed details.
 In the proposed method it is assumed that the map of light distribution is con-
structed based upon a set of images with low or medium density of randomly dis-
tributed foreground objects, localized in clusters or not and captured by a particular 
optical set. This assumption is milder than applied in many methods described in the 
literature (e.g. the Rolling Ball method). Additionally, for a particular microscope and 
a camera, the map of nonuniformity in the light distribution can be used to correct 
various images (not necessarily IHC stained images) captured by this set. Moreover, 
the proposed method of construction of the map correction, based upon a big collec-
tion of archival images, can be used for other optical sets and other types of digital 
images.
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