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The aim of this study was applications of cerebrospinal fluid (CSF) NMR-based metabolic 
fingerprinting to amyotrophic lateral sclerosis (ALS) as possible early diagnostic tool. 
Two CSF sample categories were collected: 9 ALS patients and 13 age-matched control 
patients (without neurological disease). Metabolic profile of the CSF was determined by 
high resolution proton NMR spectroscopy. For statistical analysis magnitudes of 33 signals 
of the NMR spectrum were selected. Partial least square discriminant analysis (PLS-DA) 
and orthogonal PLS-DA (OPLS-DA) modeling were used to find potential biomarkers of 
the disease. Those analyses showed that it was possible to distinguish the ALS patients 
from the control ones on the basis of the CSF metabolic profile. Significantly higher levels 
of metabolites observed in the patients with ALS may represent the state of anaerobic 
metabolism and excitotoxicity.
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is the most common type of the motor neuron 
disease in adults, affecting lower motor neurons and corticospinal tracts. Multiple 
mechanisms have been involved in the pathogenesis of motor neuron death in ALS. 
These include glutamate toxicity, mitochondrial dysfunction, protein misfolding, 
apoptosis, and other mechanisms [1]. Up to date, no biochemical marker was found to 
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diagnose ALS with required level of sensitivity and specificity [2–4]. In our  research 
we looked for global biochemical differences that might distinguish the ALS patients 
from the control subjects [5–7].
 Compared to other analytical techniques, NMR spectroscopy has special charac-
teristics which make it uniquely suitable for the analysis of metabolite mixtures. NMR 
allows reliable detection and quantification of a wide range of metabolites, containing 
hydrogen present in complex biological fluids at micromolar concentrations. NMR is 
considered to be a non-destructive technique with low handling and slow preprocess-
ing times. There are multiple examples in the literature of application of the NMR 
metabolomics to study central nervous system disorders, including a murine model of 
Huntington disease [8], studies of tissue and plasma in the rodent model of traumatic 
brain injury [9], and clinical studies of patients with schizophrenia [10].
 The composition of CSF is directly dependent upon production rates of various 
metabolites in the brain; therefore, analysis of the CSF metabolome can offer bio-
chemical insights into central nervous system (CNS) disorders, such as brain injury 
[11] or others [12].
 The present study was carried out to assess the metabolic differences between 
the CSF samples of the patients with definite ALS, and the age-matched control 
subjects. In our study we used proton NMR spectroscopy combined with discrimi-
nant analyses, PLS-DA (Partial Least Square Discriminant Analysis) and OPLS-DA 
(Orthogonal Partial Least Square Discriminant Analysis) to  evaluate potential use 
of this technique as an additional tool for diagnostic assessment [13]. 

2. Patients and Methods

2.1. Patients

Two groups of patients were analyzed: ALS patients (n = 9, 5 female and 4 male 
patients at mean age of 53±12, 11±5 months after diagnosis) and control subjects 
(n = 13). The diagnosis of definite ALS patients was made according to diagnostic 
criteria for ALS based on the El Escorial World Federation [14]. The study protocol 
was approved by the Medical University of Warsaw Ethics Committee and the in-
formed consent form was obtained in accordance with the Declaration of Helsinki. 
The control group comprised of patients without neurological diseases who under-
went vascular or inguinal hernia surgery under spinal anesthesia. The controls were 
matched by age with the ALS patients group. 

2.2. Sample Preparation and Spectrum Acquisition

The CSF samples used for the examination were collected during diagnostic lumbar 
puncture or spinal anesthesia. The samples were centrifuged at room temperature 
at 15000 rpm for 5 min, and the supernatant was frozen at –80°C until the NMR 
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analysis was performed. The pH of the CSF was 7.8–8.2. The 1H NMR spectra were 
acquired at 25ºC on a Varian Unity+ 500 NMR spectrometer (Varian Inc., USA) with 
operating frequency 500.6 MHz. In the NMR examination, standard pulse sequence 
was used with presaturation of the water signal. Each measurement consisted of 
512 scans and 12s pulse repetition. To achieve stable lock signal, 100µl of D2O was 
added to each sample and 3-trimethylsilyl propionate (TSP) was used as a reference 
signal (0 ppm and 1mM) for normalization of all spectra. The signals were assigned 
according to our own reference database and from literature [15–17].

2.3. Data Analysis

Quantities of metabolites were expressed as relative intensity (based on the magnitude 
of spectral peaks, and relative to the internal standard TSP). The measured signal mag-
nitudes correspond to concentration of the compounds. All signals used were at least 
three times greater than the signal-to-noise ratio calculated for each spectrum.
 Data reduction technique was applied to each NMR spectrum, using the targeted 
profiling method. Targeted profiling is an approach to data reduction that involves 
comparison to the NMR spectral signatures of individual metabolites found in 
a reference database. This technique works by reducing spectral data to quantified 
metabolites, which can then be used as input variables in pattern recognition tools 
such as projection to latent structures. Data normalization is an important step for 
any statistical analysis. The objective of data normalization is to allow meaningful 
comparisons of samples within a dataset. 
 Partial least squares (PLS) are a wide class of methods for modeling relations 
between sets of observed variables by means of latent variables. It comprises of regres-
sion and classification tasks as well as dimension reduction techniques and modeling 
tools. The underlying assumption of all PLS methods were that the observed data 
are generated by a system or process driven by a small number of latent (not directly 
observed or measured) variables. In this pattern recognition technique, a regression 
model is formed between the biochemical and class membership, allowing for selec-
tive removal of variables that do not contribute to class distinction. As part of this 
routine, the class membership of every seventh sample was iteratively predicted using 
jack-knifing and the results from this  were used to generate a goodness of fit meas-
ure Q2 for the overall model: Q2 = (1–PRESS/SS), where PRESS is the predicted 
squared sum of error and SS is the residual sum of squares of the previous dimension. 
The goodness of fit is reported as the cumulative score across all of the components 
– Q2cum. This was used to determine whether the model had any predictive power 
and the predicted class membership better than chance. This jack-knifing routine was 
used if the data sets were too small to split the data into training and test sets – as in 
our case. The theoretical maximum is 1 for a perfect prediction. In order for a PLS 
component to be considered significant, Q2cum must be significantly larger than zero 
and is generally considered as good when equal or greater than 0.5. Mean-centering 



24 B. Toczyłowska et al.

was performed column-wise to remove the offsets. All the measured biochemical data 
were treated on an equal level with autoscaling (unit variance scaling), which is com-
monly applied and uses standard deviation as the scaling factor. After the autoscaling, 
all metabolites have standard deviation of one, and therefore the data is analyzed on 
the basis of correlations instead of covariances, as is in the case using the centering 
method [18]. Correlation coefficients from the PLS-DA were used to rank importance 
of each variable to further describe the differentially expressed biochemical data ac-
countable for the separation between groups [19, 20]. 
 Orthogonal signal correction (OSC) was the method initially developed for 
spectral data re-processing by Wold et al. [22]. Employing information in the re-
sponse matrix Y (containing, in our case, class assignment – confirmed diagnosis), 
the strong systematic variation in the descriptor matrix X (containing, in our case 
spectral data) that is orthogonal (non-correlated) to Y can be identified. This variation, 
denoted as Y-orthogonal variation, can subsequently be studied and, depending on 
the problem at hand, discarded or retained. Despite the fairly unambiguous concept 
of OSC, a multitude of implementations occur in the literature [21–23]. OPLS [21] 
is an extension to the supervised PLS regression method featuring an integrated 
OSC-filter. In simple terms, the OPLS uses information in the Y matrix to decompose 
the X matrix into blocks of structured variation correlated to, and orthogonal to Y, 
respectively. The main benefit of interpretation using the OPLS-DA compared to the 
PLS-DA lies in the ability of the OPLS-DA to separate predictive from non-predic-
tive (orthogonal) variation [24]. The OPLS-DA technique is capable of removing 
information unrelated to the response matrix Y (descriptor, e.g., 0/1) from an input 
matrix X (NMR spectral data) Thus, the resulting differential metabolites accountable 
for the discrimination between the two groups are most likely to be concentrated in 
the first predictive component. 
 The variable importance in the projection (VIP) value of each variable in the 
model was calculated to indicate its contribution of the X variables to the classifica-
tion. Those variables with the VIP value greater than 1.0 are considered significantly 
different, and the larger VIP value of variable represents higher contribution to the 
discrimination between two groups. 
 In our study we use supervised methods of the PLS-DA and OPLS-DA analyses. 
For the statistical analysis 33 signals of the NMR spectrum (Fig. 1, Table 1) were 
selected. Since we could not distinguish in the NMR spectrum between Gln and Glu 
compounds because of the overlap between the signals, both signals were analyzed 
as one Glx. For univariate data analysis non-parametric Mann-Whitney U test was 
carried out. The statistical analysis was performed using the Statistica software 
(STATISTICA version 7.1, StatSoft, Inc., 2005.). A p-value of less than 0.05 was 
considered to be statistically significant. For multivariate analysis Bonferroni cor-
rections for correlated variables was applied. The PLS-DA and OPLS-DA analyses 
were performed using the software package SIMCA-P (Version 12, Umetrics AB, 
Sweden) [25].
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Fig. 1. Normalized proton NMR spectra of CSF samples – ALS patient (A) and control patient (B). 
Two parts of each spectrum were presented – aromatic region from 8.6 to 6.4 ppm (left) and aliphatic

 region from 4.6 to 0.5 ppm (right)
Analyzed signals: formate (8.47 ppm), histidine (7.73 ppm), phenylalanine (7.39 ppm), tyrosine
(6.86 ppm), myo-inositol (4.07 ppm), glycine (3.52 ppm), scyllo-inositol (3.36 ppm), glucose 
(3.25ppm), choline (3.21 ppm), citrulline (3.16 ppm), creatinine (3.05 ppm), creatine (3.04 ppm), 
 citrate (2.68 ppm), Glx (2.42 ppm, 2.14 ppm), pyruvate (2.38 ppm), acetoacetate (2.28 ppm), acetone 
(2.24 ppm), acetate (1.92 ppm), GABA (1.84 ppm), lysine (1.72 ppm), alanine (1.46 ppm), lacta-
te (4.12 ppm and 1.34 ppm), γ-OH-butyrate (1.21 ppm), valine (1.03 ppm), isoleucine (0.96 ppm), 
 leucine/α-OH-n-butyrate (0.90 ppm) and unassigned signals 7.68 ppm, 4.04 ppm, 4.01 ppm, 3.30 ppm

and 1.28 ppm

3. Results

Concentrations of lactate, Glx and acetate were significantly higher in the ALS 
patients group as compared to the control group (Mann-Whitney test, p < 0.01) 
(Table 1).
 In order to enhance identification of potential differences in biochemical composi-
tion of the CSF the PLS-DA and OPLS-DA modeling were employed, based on the 
unblinded patient’s classification. The best results obtained by the PLS-DA (Fig. 2) 
consisted of two components (R2cum = 0.714, Q2cum = 0.462). The most important 
parameters (VIP > 1) that contributed to the class separation were the signals from 
acetate, GABA, Glx (both Glu and Gln signals), creatinine, myo-inositol, lactate, 
formate, choline and unassigned signals at 1.28 ppm, 4.04 ppm and 7.68 ppm. Mean 
concentrations of acetate, Glx, creatinine, myo-inositol, lactate, formate choline and 

 A
  x50      x1

 B
    x50      x1

ppm

ppm

 8.5 8.0 7.5 7.0 6.5 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

 8.5 8.0 7.5 7.0 6.5 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
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unassigned signal at 7.68 ppm were higher while mean concentrations of GABA and 
unassigned signal at 4.04 ppm and 1.28 ppm were lower in the ALS patients group 
as compared to the control group (Table 1).

Table 1. Concentrations of compounds presented in arbitrary units in mean ± SEM values, measured
as signal magnitudes from normalized NMR spectra

Compound Mean ± SEM [arbitrary units]
ALS Control p-value VIP>1

formate 4683 ± 781 2687 ± 245 0.051 PLS-DA, OPLS-DA
histidine 1253 ± 321 905 ± 90 0.431
unassigned 7.68ppm 343  ± 128 292 ± 48 0.917 PLS-DA
phenylalanie 1280 ± 249 742 ± 60 0.043 OPLS-DA
tyrosine 1115 ± 229 676 ± 74 0.021 OPLS-DA
lactate 97154 ± 13143 53557 ± 6312 0.007 PLS-DA, OPLS-DA
myo-inositol 15019 ± 2006 13605 ± 1610 0.431 PLS-DA
unassigned 4.04ppm 5573 ± 968 6843 ± 911 0.345 PLS-DA
unassigned 4.01ppm 12475 ± 1693 9050 ± 999 0.129
glycine 65710 ± 9646 42578 ± 5397 0.030
scyllo-inositol 21967 ± 6285 15709 ± 7360 0.110
unassigned 3.30ppm 7254 ± 1500 5622 ± 521 0.896
glucose 130624 ± 19108 83395 ± 9699 0.043 OPLS-DA
choline 3338 ± 644 1646 ± 175 0.021 PLS-DA, OPLS-DA
citrulline 7780 ± 1124 7687 ± 1200 0.794
creatinine 25913 ± 375 22866 ± 2764 0.471 PLSA-DA
creatine 29678 ± 5264 18275 ± 1858 0.017 OPLS-DA
citrate 37510 ± 7547 26146 ± 2992 0.292
Glx 46873 ± 8948 21766 ± 2424 0.004 PLS-DA, OPLS-DA
pyruvate 15830 ± 7216 19228 ± 2941 0.179
acetoacetate 37510 ± 7547 26146 ± 2992 0.471 PLS-DA
acetone 10596 ± 6553 21545 ± 6079 0.025
Glx 15356 ± 2878 16532 ± 1846 0.695 PLS-DA
acetate 32400 ± 5456 11578 ± 2062 0.002 PLS-DA, OPLS-DA
GABA 955 ± 614 1380 ± 96 0.350 PLS-DA
lysine 3633 ± 892 2046 ± 176 0.164 OPLS-DA
alanine 2115 ± 305 1445 ± 166 0.038 OPLS-DA
lactate 413868 ± 56611 239412 ± 25984 0.014 PLS-DA, OPLS-DA
unassigned 1.28ppm 2063 ± 309 2357 ± 134 0.110
γ-OH-butyrate 9757 ± 4033 15817 ± 4982 0.357
valine 2898 ± 337 2023 ± 225 0.060 OPLS-DA
isoleucine 4283 ± 541 3383 ± 317 0.209
leucine/α-OH-n-butyrate 6959 ± 856 5797 ± 630 0.209
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 Result of applying the PLS-DA in discrimination of the ALS samples from the 
control samples is shown in Fig. 2. In this model, 90.91% of all patients were as-
signed correctly to their groups – 7 out of 9 patients from the ALS group (77.78%) 
and all patients from the control group (100%).
 The best result obtained by the OPLS-DA (Fig. 3) consisted of one predictive 
and one Y-orthogonal component (R2cum = 0.705, Q2cum = 0.428). The most im-
portant parameters (VIP > 1) that contributed to the class separation were signals 
from acetate, lactate, Glx, choline, formate, phenylalanine, glucose, creatine, valine, 
tyrosine, lysine and alanine. The concentrations of all those compounds were higher 
in the ALS patients group as compared to the control group (Table 1).
 Both the PLS-DA and the OPLS-DA showed the same ability to distinguish 
the ALS patients from the control group. The OPLS-DA showed that 90.91% of the 
patients were assigned correctly to their groups, namely 7 out of 9 patients from the 
ALS group (77.78%) and all the patients from the control group (100%).
 Validity of the models (PLS-DA and OPLS-DA) was tested for both groups of 
the patients using analysis of variance of cross-validated predictive residuals. Both 
presented models were valid for two groups ( p < 0.001).

Fig. 2. The score plot of the PLS-DA model of the first two principal components t[1] and t[2];
t[1] represents the greatest amount of correlated variation in the data set, whereas t[2] represents the
second greatest amount of correlated variation. Ellipse represents Hotelling T2 with 95% confidence

in the score plots
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4. Discussion

Non-parametric Mann-Whitney test revealed significant differences in lactate, Glx 
and acetate concentrations between the ALS patients and the control subjects. Further, 
the PLS-DA and OPLS-DA models to the CSF biochemical compounds distinguish 
the ALS and control subjects were applied. The most important compounds that 
contributed to the group separation using the PLS-DA model were: acetoacetate, 
acetate, GABA, Glx, creatinine, myo-inositol, lactate, formate and choline, and unas-
signed signal at 4.04 ppm, and 7.68 ppm. For the OPLS-DA model those compounds 
were: acetate, lactate, Glx, choline, formate, phenylalanine, glucose, creatine, valine, 
tyrosine, lysine and alanine. 
 Both statistical analysis methods (Mann-Whitney test and the PLS-DA/OPLS-
DA) confirmed that presence and concentrations of acetate compound be the most 
important in distinguishing the ALS and control group. Acetate, lactate, Glx, choline, 
and formate play the “separating” role in both discriminant analysis models.
 Significant increase in lactate concentration in the ALS patients group as 
compared to the control subjects may indicate lack of oxygen that leads to anaero-
bic respiration. Also, energetic insufficiency leads to anaerobic respiration [26]. 
Lactate level in CSF largely reflects its production by the brain. Abnormally low 

Fig. 3. The OPLS-DA score plot. t[1] is the predictive component and t0[1] is the first orthogonal
component. The ellipse shows the Hotellinger T2-range (significance level 0.05)
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glucose level causes rise in CSF lactate level, as the brain is forced to increase 
its anaerobic glycolysis in order to meet its metabolic demand [27]. In our study 
we observed significantly higher levels of both CSF lactate and glucose. Vijay-
alakshmi et al. [28] studied cells exposed to CSF obtained from ALS patients 
and observed increased anaerobic glycolysis and lactate production. Their stud-
ies show that  the CSF from the ALS patients may induce enhanced anaerobic 
glycolysis or necrotic cell death. Our study confirmed their observation that is 
an increased lactate production. 
 Increase in acetate concentration in CSF leads not only to altered NAA metabo-
lism but also to oligodendrocyte dysfunction. Since a major portion of acetate in the 
brain is utilized in fatty acid and lipid synthesis, the increased acetate concentration 
may suggest a decreased synthesis or increased degradation of myelin-related fatty 
acids and lipids in the brain. Elevated concentration of acetate could suggest a dis-
turbance of carbohydrate metabolism. Increased acetate concentration in the CSF 
has been observed in patients with Creutzfeldt-Jakob disease [10]. Blasco et al. [29], 
who studied CSF from patients with early ALS, indicated a significantly lower level 
of acetate and higher level of pyruvate in the ALS patients group as compared to 
the group of patients with other neurological diseases. Kumar et al. [30] observed 
increased levels of pyruvate and acetate in the serum of ALS patients as compared 
to control group. Our study showed a significant increase in acetate concentration 
and non significant decrease of pyruvate level in the CSF of the ALS patients as 
compared to the control group. 
 Acetylcholine formation is limited by the intracellular concentration of choline, 
which is determined by active transport of choline into nerve endings. Choline is 
supplied to the neurons either from plasma or by metabolism of choline-contain-
ing compounds [31]. In our study, choline level was measured to be significantly 
higher in the ALS patients versus the control group. Choline is the main component 
of phosphatidylcholine and sphingomyelin, the two classes of phospholipids which 
are abundant in cell membranes. Choline is also the main metabolite of one of the 
neurotransmitters – acetylcholine, which reflects the activity of the central nervous 
system. Elble et al. [32] studied Alzheimer disease and found deficiency of ace-
tylcholinesterase activity. They suggested that rise of choline level was related to 
neuronal membrane breakdown and reduced choline uptake by cholinergic neurons, 
and that the reduction in CSF acetylcholinesterase activity is consistent with the 
depletion of cholinergic neurons. 
 Results of our study show that significant increase of glucose and alanine levels 
indicate insufficiency of the glycolytic cycle. In the ALS patients group the citrate 
concentration was at the same level as in the control group. This observation sug-
gests that normal concentration of acetyl coenzyme A (Acetyl-CoA) may be 
compensatory and no TCA (Tricarboxylic Acid) cycle perturbation occurred [33]. 
Results obtained by other authors [34] who studied CSF composition indicated that 
reduction in glycolytic energy supply can contribute to ALS pathogenesis. They also 
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suggested that this reduction can be the overriding cause of ALS related to neuronal 
cell death and depletion of intracellular ATP levels and may have resulted from the 
combined reduction of the glycolysis, TCA cycle and oxidative phosphorylation. 
Our study confirmed most of their findings. 
 Result of our study show that an impaired glycolysis process was the main 
biochemical abnormality. However, variables which lead to the differentiation of 
the groups in multivariate discriminant analyses included also amino acids that play 
crucial role in neurotransmission i.e. Glx and GABA. 
 Acute or chronic stimulation by the excitatory amino acids of the glutamate 
receptors may lead to neuronal death. This enhanced activation could be intensive 
in a short time period or subliminal in long period, and can be evoked by chronic 
stress, toxicity, electrolyte imbalance or micro stroke. Excitotoxic index is defined 
in terms of concentrations of glutamate × glycine/GABA [35]. We found increased 
Glx concentration that can be caused by elevated Gln and/or Glu concentrations. 
Glycine concentration was significantly higher and GABA concentration was lower 
in the ALS group as compared to the control group, which increased the excitotoxic 
index. In general, the results of our study support the hypothesis of the excitotoxic 
mechanism in ALS pathogenesis [36–39]. 
 Studies of CSF by Shaw et al. [40] and previous studies have shown incon-
sistent results. The reasons for these discrepancies may have been partly caused 
by methodological factors – sample storage and preparation, detection methods 
– chromatography, and selection of the control group e.g. non neurological patients, 
healthy volunteers or non motor neuron disease neurological patients. In our study 
the NMR spectroscopy was used to determine differences between groups of the 
patients. In many of those studies only amino acids were measured except Blasco 
et al. [29] who also used NMR spectroscopy but the control group was different 
– patients with various neurological diseases as compared to our non-neurological 
patients.

5. Conclusions

We concluded that applying multivariate statistics to 1H NMR data obtained from the 
CSF samples provide a useful screening tool. The PLS-DA and OPLS-DA models 
tested in this study were valid for the analyzed data and showed the feasibility of 
creating fingerprints for initial analysis of the motor neuron disease patients. The 
OPLS-DA and PLS-DA models allowed distinguishing the ALS patients group and 
the control group with 90.91% correct classification. Furthermore the analysis of 
biochemical compound contributed to the class separation show that significantly 
higher levels of metabolites observed in the patients with ALS may represent the 
state of anaerobic metabolism and excitotoxicity. Those processes were expected to 
be involved in motor neuron diseases. 
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