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The aim of this paper is to design a pattern recognition based system to detect the P300 
component in the EEG trials. This system has two main blocks, feature extraction and clas-
sification. In the feature extraction block, in addition to morphological features, some new 
features including intelligent segmentation, common spatial pattern (CSP) and combined 
features (CSP + Segmentation) have also been used. Two criteria were used for the feature 
evaluation. Firstly, a t-test has been applied. Secondly, each of these four groups of features 
was evaluated by a Linear Discriminant Analysis (LDA) classifier. Afterwards, the best set 
of features was selected by using Stepwise Linear Discriminant Analysis (SWLDA). In 
the classification phase, the LDA was used as a linear classifier. The algorithm described 
here was tested with dataset II from the BCI competition 2005. In this research, the best 
result for the P300 detection was 97.4% .This result has proven to be more accurate than 
the results of previous works carried out in this filed.

K e y w o r d s: P300, brain computer interface (BCI), pattern recognition, feature extrac-
tion, classification

1. Introduction

Brain computer interface (BCI) is a system that creates a direct channel between 
computer and the brain. Among various BCI systems, electroencephalography (EEG) 
is still the most common method because of its non-invasive nature. By analyzing 
the electroencephalographic activities recorded from the scalp, a computer can rec-
ognize the brain’s intention and translate it to commands for output devices such as 
a computer application or a neuroprothesis.
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 Infrequent or particularly significant auditory, visual, or somatosensory stimuli, 
when interspersed with frequent or routine stimuli, typically evoke a positive peak 
at about 300 ms in the EEG over parietal cortex. Donchin and his colleagues have 
used this ‘P300’ or ‘oddball’ response in a BCI [1]. Inbar used the P300 component 
for communication between the brain and computer. The BCI developed in his work 
was based on the BCI described by Farwell and Donchin in 1988, which allows 
a subject to communicate one of 36 symbols presented on a 6 × 6 matrix [2].
 A P300-based BCI has an apparent advantage in that it requires no initial user 
training: the P300 is a typical or naive response to a desired choice. 
 The P300 speller paradigm is a kind of BCI which uses the P300 potential to 
spell the intended character of the user. The BCI Competition is a competition that 
is held every two years since 2000 and the P300 speller system is one of its parts. 
The P300 speller paradigm used to produce the dataset IIb of the BCI Competition 
2003 and the dataset II of the BCI Competition 2005 is basically the same as that of 
Farwell and Donchin’s [3].
 Since that time, many research groups and investigators in this line of research 
have worked on the P300 Speller system. For example Sellers’ group have carried 
out several studies and examined the effect of some cases such as the P300-Speller 
matrix size, expanding the classical P300 feature space, the performance of differ-
ent linear and nonlinear classifiers on the BCI system accuracy [4, 5]. In their latest 
research, this group has tried to make changes in the stimulus paradigm to reduce 
the probability of error in the P300 detection [6].
 Seyyedsalehi in 2008 [7] used a feature set as inputs into committee machines 
(CM) based on the LDA, MLP and SVM. This algorithm achieved an accuracy of 
94% in the P300 detection.
 Rakotomamonjy and Guigue proposed a method that detects the P300 through 
an ensemble of classifiers approach. Each classifier is composed of a linear support 
vector machine trained on a small part of the available data for which a channel 
selection procedure has been performed. Performance of their algorithm has been 
evaluated on the dataset II of the BCI Competition III and has yielded the best per-
formance (96.5% accuracy) in the competition [8].
 In 2009 Salvaris [9] tried to introduce a novel classification method included 
discrete-wavelet transform (DWT) preprocessing and an ensemble of Fisher’s Linear 
Discriminants for classification. The performance of the proposed method was slightly 
worse than the state of the art method for the BCI competition III data sets. But the 
proposed method was far less computationally expensive than the current state of 
the art method. The best accuracy that he could achieve was 95% on the dataset II 
of the BCI Competition III. 
 In this paper a pattern recognition system depicted in Fig.1 is used for detection 
of the P300 component. In this study, emphasis is on the feature extraction block. 
Thus, taking into account priori Neurophysiologic knowledge and different available 
processing methods, we decide to extract features through some new and suitable 
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methods that have been used far less in this area. (Like intelligent signal segmenta-
tion and common spatial pattern (CSP)). In addition, morphological features – being 
common features in this field – have been used.

Fig. 1. Block diagram of the processing system

 The outline of the rest of the paper is as follows. In Section II, the data set and 
the methods used in each block of Fig.1 are explained. The definition of the used 
features, the method of feature selection and the classification algorithm will be 
described in this section. Section III presents the performance and discussion about 
the results. Finally, Section IV concludes the paper. 

2. Materials and Methods

In this section the proposed P300 detection system and its different parts (according 
to Fig. 1) are introduced.

2.1. Data Acquisition

The speller system studied in this article is based on the P300 speller paradigm that 
has been provided by Wadsworth center for the BCI Competition 2005 [3].
 Farwell and Donchin developed a protocol whereby a subject is presented in 
a 6 × 6 character matrix as illustrated in Fig. 2.

Fig. 2. User display for Farwell and Donchin Paradigm [3]
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 For the spelling of a single character, each of the 12 rows and columns of the 
matrix is then intensified according to a random sequence. All rows and columns of 
this matrix were successively and randomly intensified at a rate of 5.7 Hz. That is, 
each row and column in the matrix was randomly intensified for 100ms and after 
intensification of a row/column, the matrix was blank for 75ms. The subject is asked 
to focus its attention on the character he wants to spell and then it is expected that a 
P300 evoked potential appears in the EEG in response to the intensification of a row 
or column containing the desired character. In order to make the spelling procedure 
more reliable, this sequence of intensifications is repeated 15 times for each character 
to spell.
 In the BCI Competition 2005, data has been recorded from two subjects and 
5 different spelling sessions. Each session is composed of runs, and for each run, 
a subject is asked to spell a word. For a given acquisition session, all EEG signals of 
a 64-channel scalp have been continuously collected. The locations of the channels 
are defined based on the 10–20 standard. Before digitization at the sample rate of 
240 Hz, the signals have been band pass filtered from 0.1–60 Hz.
 For the competition data set the recorded data includes 85 characters. So there 
are 85*10 = 850 trials without the P300 and 85*2 = 170 trials with the P300 and 
totally we have 1020 data for our study.

2.2. Preprocessing

In this step, in order to eliminate high frequency and low frequency noise, the signal 
is passed through a high pass elliptic filter with 3 dB cut off frequency of 0.5 Hz and 
a low pass elliptic filter with 3 dB cut off frequency of 35 Hz. Then all the filtered 
data are normalized in the interval of [–1, 1] and finally for each channel the continu-
ous signal is divided into epochs. Each epoch starts at the time of stimulation (the 
flashing of a row or column) and lasts for 1000 ms after it.
 Another important issue is choosing appropriate channels. Because of the large 
number of channels used for data recording and to avoid complicated calculations, 
this selection is necessary. Therefore in this paper at all methods, except for the CSP 
method, we use seven more suitable channels including Po7, Po8, Fz, C3, Cz, C4, 
Pz. These channels were introduced as appropriate channels by the second place 
winner of the BCI Competition.
 Finally, the data were averaged over 15 repeated intensifications for each char-
acter to spell. This increases the performance of our system significantly.

2.3. Feature Extraction 

After the preprocessing, suitable features are extracted from the raw signal. The goal 
of feature extraction is to remove noise and other unnecessary information from the 
input signals, while at the same time retaining the information that is important in 
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discriminating of different classes of the signals. A priori neurophysiologic knowledge 
can aid to decide which brain signal features are to be expected to hold the most 
discriminative information for the chosen paradigm.
 In this study, four different groups of features are proposed and extracted that 
will be explained in this part.

2.3.1. Intelligent Segmentation

In recent years, there has been an explosion of interest in mining time series data-
bases. As with most computer science problems, data representation is the key to 
the efficient and effective solutions. Several high level representations of time series 
have been proposed, including Fourier Transforms, Wavelets, Symbolic Mappings 
and Piecewise Linear Representation (PLR) [10].
 In all cases, describing the data in a compact mathematical way is useful towards 
at least three goals: feature extraction (shape descriptors), data compression, and 
noise filtering [11].
 The feature vector for the P300 detection, in some studies is constructed by con-
catenating the EEG time series data acquired from each electrode. Constructing the 
feature vectors with all sampled data points might result in a very high-dimensional 
vector, which might make suffer from the curse of dimensionality.
 To avoid these problems, many investigators have applied downsampling to 
reduce the dimension of the feature vectors. Typically, two approaches have been 
primarily used, a decimator approach [8], and a downsampling approach with uniform 
interval segments [12].
 But our signal segmentation refers to the approximation of a time series T, of 
length n, with K straight lines. Because K is typically much smaller than n, this 
representation makes the storage, transmission and computation of the data more 
efficient [10].This process can be used as a stage of feature extraction in the pattern 
recognition systems.
 In the current study, we propose a new intelligent segmentation method to im-
prove accuracy of the P300-based BCI classification. With this approach, we perform 
segmentation at non-uniform intervals as illustrated in Fig. 3 and take the average in 
each segment. The idea behind this strategy is based on our assumption that effective 
down sampling for the P300-based BCI should provide clear distinctions between 
the two classes (target and non target), and at the same time the degree of separation 
between the two classes should become larger.
 To assign the samples into the classes, we need a measure of similarity or dis-
similarity. In this research, we employ Fisher Discriminant Criterion (FDC) for this 
purpose. In the FDC, we provide a mapping vector that maximizes the ratio of the 
squared average difference between classes to the sum of between class variances. 
We first define the average vectors, between-class covariance and within-class co-
variance.
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   B = (m0 – m1)(m0 – m1)T, 

where N0 and N1 represent the number of training data and yi ∈ {0,1} is a label for 
each class.
 Then, the Fisher Discriminant Analysis (FDA) mapping vector is given by 
a vector that maximizes the variable denoted by “a” in the following expression:

   J( )a = a Ba

a Wa

T

T . (3)

The J(a) in this expression is an FDC. Based on derivatives of equation (3) and 
 after performing a series of mathematical operations, we obtain Fisher Discriminant 
Criterion that we will use in this research:

   J = (m0 – m1)T W –1(m0 – m1). (4)

Now we formulate the problem of obtaining the “optimal segment.” Let E = {(Si,yi ) /
i = 1, …, N } be training samples, where yi ∈ {0,1}is a label and Si represents the 
EEG data. Thus, if a single trial EEG consists of n data points, Si is defined as
Si = {si(1), si(2), … , si(n)}, where si(t) ∈ Rd, and d is the number of channels. Assume 
that the number of segments is denoted by k, the breakpoints between segments can 
be defined as T = (τ0, τ1, … , τk ) where, τj ∈ N, τj < τj+1, τ0 = 0 and τk = n. 

Fig. 3. Intelligent Segmentation and feature vector generation [13]
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 We define a Make Vector (Si; T ) function that down samples an Si and converts 
it into a vector:
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Xi obtained by this function is a d × k dimensional vector. Consider the training 
data set Ẽ(T ) = {(Xi (T ), yi) / i = 1, … ,N}, which is obtained by the transformation 
defined by equation (5).
 Since m0, m1, and W which we defined previously are generated by Ẽ(T ), they 
are all functions of T. The degree of separation between two classes based on the 
feature vectors generated by T is rephrased by equation (4) as follows:

   J(T ) = (m0(T ) – m1(T ))t W(T )–1(m0(T ) – m1(T )). (6)

Finally, the problem of finding “segments” that maximize the degree of separation be-
tween classes is reduced to finding 

�
T , which is given by the following formula [13]:

   
�

…T J T J TT k
= =arg max arg max( ) ( )., , ,τ τ τ0 1

 (7)

Subject to τj ∈N, τj < τj + 1, τ0 = 0, τk = n. 
 To solve equation (7), we seek the optimal 

�
T  by modifying Local Iterative 

Replacement (LIR) into our time series data segmentation. LIR is a simple greedy 
procedure where the new place for a breakpoint is selected optimally between the 
neighboring two break points [14].
 In LIR, we first provide the initial value for T, and then seek the optimal solution. LIR 
consists of repeated computation of the boundary selection between segments, and the 
search of a new boundary location before or after the selected boundary, until we obtain 
a solution that satisfies equation (7), which is assured to be a local optimum [13].
 The goal is maximizing the FDC (J), so this algorithm will be stopped when the 
amount of FDC cannot be increased by any admissible move of a breakpoint.
 After the convergence of the algorithm, the feature vector is obtained. In this 
vector the number of features for each channel is equal to the number of segments 
(k) and the average of each segment is taken as a feature (according to Fig. 3). For 
each character, the feature vector is obtained by concatenating the features from 
seven chosen channels. In other words, the length of this vector is 7k.
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 Choosing the value of k is important because a small k may produce an inaccu-
rate approximation of the signal and important parts of the data may be lost. On the 
other hand, a large k cannot reduce the volume of data and cannot avoid the curse of 
dimensionality. Therefore, we examined some values of k and finally chose k = 10 
as the optimum value providing the best accuracy.

2.3.2. CSP

The CSP is a technique of spatial filtering that finds the directions of optimal dis-
crimination between two classes through variance. It maximizes the variance of one 
condition and at the same time minimizes the variance of the other condition [15].
 This method has been originally used for detection of the abnormal EEG signals 
[16], and was successfully applied to classification of the movement related EEG 
signals [17].
 Within the P300 oddball principle context, we consider two spatio-temporal 
matrices Xt and Xnt with dimension N × L, where N is the number of channels and 
L is the number of samples of the time series epoch of each channel. The matrix 
Xt represents the P300 potential evoked by the target event and Xnt represents 
the ongoing EEG for non target events. The CSP method is based on the principal 
component decomposition of the averaged covariance matrix, R  [18]. R  is ob-
tained by taking the sum of the target and non target covariances ( )Rt  and ( )Rnt . 
The averaged covariance matrix R  is factorized through the application of the 
PCA as follows:

   R R Rt nt= + = ′A A ,λ  (8)

where A is the orthogonal matrix of eigenvectors of R  and λ is the diagonal matrix 
of eigenvalues of R . A whitening transformation matrix W, transforms the covari-
ance matrix R  to I (identity matrix)

   W A ,= ′λ
1
2  (9)

   S WRW I= ′ = .  (10)

Applying the whitening transform to each individual class, we obtain

   S WRWt t= ′. 

   S WR Wnt nt= ′.  (11)

From the above two equations it is straightforward that

   St + Snt = I. (12)
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Performing a PCA factorization on (11) we have

   St = At λt A′t             Snt = Ant λnt A′nt . (13)

From (12) and (13) then

   At = Ant . (14)

   λt = I – λnt . (15)

This means that both class patterns share the same eigenvectors and the respective 
eigenvalues are reversely ordered. The eigenvector with the largest eigenvalue for 
one class has the smallest eigenvalue for the other class and vice versa. The first and 
last eigenvectors are optimal eigenvectors to discriminate the two classes. Defin-
ing At and Ant as the first and last eigenvectors with dimension N × 1 the following 
spatial filters are designed:

   Ht = A′t W. 

   Hnt = A′nt W. (16)

The spatially filtered data is given by:

   Y = HX, (17)

where H is the matrix or vector with the selected filters.
 In our study, the third set of features is obtained through the Common Spatial 
Pattern (CSP) technique. In this method, instead of using many channels in the original 
space we can obtain better separation between two classes by using fewer alternative 
channels in a new space. Therefore, in this method we use all 64 channels and after 
anti-aliasing filtering, we down sample the signal from 240 samples per second to 
24 samples per second. Then, according to the pervious section, the eigenvalues and 
vectors are calculated (equation (14) and (15)) and the N × 4 dimensional matrix H 
is obtained (By using the first two and the last two eigenvectors).
 For feature extraction by the CSP method, according to previous research [15, 
18], two sets of features are more common and we use these two sets. The first set 
is filtered projection features, signals that are filtered by the spatial filter, H, and are 
converted to 4 × L dimensional signals (All parameters like H, N and L are as defined 
previously).
 The second set, which is usually used for classification in motor imagery, is the 
ratio between the variance of one filtered projection and the sum of the variances of 
all filtered projections. 
 For building this set, according to equation (18) for each signal, four features 
are obtained.
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where S is an L × N dimensional signal and Hk is the kth row of H in equation 
(17).
 Thus the feature vector of this part is obtained by concatenation of these two 
feature sets.

2.3.3. Combined Features (CSP+ Segmentation)

This kind of feature is a combined feature group. In this group we first reduce the 
number of channels by going to a CSP’s space and then decrease the volume of the 
data in this new space using intelligent segmentation and choosing better samples 
for classification. We also compare the result of this combined feature vector with 
the results of each of the groups CSP and intelligent segmentation alone.

2.3.4. Morphological Features

In this paper, morphological features are used in two parts, once for the raw signals 
and another time after the intelligent segmentation. 
 At first, 11 morphological features are chosen. Some of these features were pre-
viously used by Kalatzis et al. in discriminating of depressed patients from healthy 
controls using the P600 component of the ERP signal [19]. These features are defined 
and calculated as follows: 
 1) Latency ( , )

max
LAT ts  – the ERP’s latency time, i.e. the time where the maxi-

mum signal value appears:

   t t s t ssmax
{ / ( ) },max= =

where s(t) is the ERP single trial during 0–1000ms after stimulus and smax is the 
maximum signal value in this time interval.
 2) Amplitude ( , )maxAMP s  – the maximum signal value:

   s s tmax max ( )= { }  

 3) Positive area (PAR, AP) – the sum of the positive signal values:

   A s t s tP
t ms

ms

= +
=
∑ 0 5
0

1000

. ( ( ) ( ) ).  
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 4) Negative area (ANR, An) – the sum of the negative signal values:

   A s t s tn
t ms

ms

= −
=
∑ 0 5
0

1000

. ( ( ) ( ) ).  

 5) Peak-to-peak (PP, pp):

   pp = smax – smin , 

where smax and smin are the maximum and the minimum signal values, respectively:

   s s tmax max ( )= { }          s s tmin min ( )= { } ,

 6) Peak-to-peak time window (TPP, tp):

   t t tpp s s= −
max min

.

 7) Peak-to-peak slope ( , )PPS spp� :

   �s pp

tpp
pp

= .

 8) Peak of N100 (PN100) – the minimum signal value in [50, 180] time interval.

   PN100 = min{s(t), 50 ≤ t ≤ 180}.

 9) Latency of N100 (tN100) – the time where PN100 appears.

   tN100 = {t | s(t) = N100}

 10) P3N4 – difference between the maximum signal value in [185, 500] time 
interval and the minimum signal value in [320, 500] time interval (corresponding 
to the P300 amplitude and the N400 amplitude respectively).
 11) N1P3 – difference between the maximum signal value in [185, 500] time 
interval and the minimum signal value in [50, 170] time interval (corresponding to 
the P300 amplitude and the N100 amplitude respectively).
 Secondly, after the intelligent segmentation, we introduce and calculate four 
features for each segmented signal including: 
 1) max – Maximum signal value
 2) min – Minimum signal value 
 3) mean – Average over signal values 
 4) range – Peak to peak 
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2.4. Feature Evaluation

Until now, four different feature groups are prepared. For evaluating these features 
we use two methods. First a statistical analysis is applied for evaluating the fitness 
of each feature in discriminating between target and non target signals. For this 
goal, all 315 extracted features of all feature extraction methods (70 intelligent 
segmentation+100 CSP+ 40 combined+ 105 morphological) are fed into the SPSS 
program. To determine the most relevant features differing between target and non 
target signals, the features are subjected to an independent sample t-test, with the 
target and non target as the grouping variable [20].
 Then the ability of P300 detection for each feature group is looked into analyzed 
by an LDA classifier. Through these two methods, features can also be evaluated 
individually and as a group.  

2.5. Feature Selection

In any classification task, there is a possibility that some of the extracted features might 
be redundant. These features can increase the cost and running time of the system, 
and decrease its generalization performance. In this way, the selection of the best 
discriminative features plays an important role when constructing the classifiers.
 In this study, we employ a method using an SWLDA by the SPSS software to 
identify the best subset of features for classification. The SWLDA is a technique for 
selecting suitable features. In this method a combination of forward and backward 
stepwise regression is implemented. Starting with no initial model terms, the most 
statistically significant feature is added to the model. After each new entry is added 
to the model, a backward stepwise regression is performed to remove the least sig-
nificant features. This process is repeated until the model includes a predetermined 
number of terms, or until no additional terms satisfy the entry/removal criteria. In 
this research we used the second stopping criteria for the SWLDA.
 The SWLDA algorithm can be considered efficient because the terminating 
heuristic is implemented in such a way that suitable features are selected in a non-
exhaustive manner. In a sense, the SWLDA has the advantage of having automatic 
feature extraction [12].

2.6. Classification

After feature extraction and selection, we need a classifier to distinguish the target and 
non-target signals from each other. In this study, features are subjected to the LDA. The 
aim of the LDA (also known as Fisher’s LDA) is to use hyperplanes to separate the data 
representing the different classes. For a two-class problem, the class of a feature vector is 
determined by the side of the hyperplane that the vector is. This technique has very low 
computational requirements, which makes it suitable for many pattern recognition prob-
lems. Moreover this classifier is simple to use and generally provides good results.
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 Consequently, the LDA has been used with success in a great number of the ERP and 
EEG processing researches such as the motor imagery based Brain–Computer Interface 
(BCI), the P300 speller, the asynchronous BCI and the P300 detection [21, 22].
 In this study, the performance of the LDA algorithm is estimated using a leave-
one-out (LOO) method.

3. Results and Discussion

In this section, the numerical results are shown and explained.

3.1. Feature Evaluation

3.1.1. t-test Results

To determine the significance level of the difference of each feature’s average in 
the two classes (target/non target), the t-test was applied to the data. According to 
the results of the test, 140 of 315 defined features for the subject ‘A’ and 143 of 315 
defined features for the subject ‘B’ provide significant difference between the two 
classes (that is these features had p-value < 0.05). The results for the 20 most signifi-
cant features for the subject ‘A’ and ‘B’ are presented in Table 1 and 2 respectively. 

Table 1. Results of comparing between target and non-target group using
statistical t-test (for Subject A)

Feature No. in Group Feature Group p_value t_value
15 Segmentation 1.10E-38 –13.571
14 Segmentation 8.53E-30 –11.708
2 Morphological 1.62E-27 –11.195
45 Segmentation 3.17E-27 –11.128
37 Morphological 5.09E-22 –9.873
25 Segmentation 4.43E-21 –9.633
14 CSP+Seg. 5.3E-21 9.612
33 CSP 1.01E-20 9.541
35 Segmentation 3.36E-20 –9.404
36 CSP 2.49E-19 9.173
15 CSP+Seg. 6.59E-19 9.059
25 CSP+Seg. 1.28E-18 –8.980
35 CSP 4.80E-18 8.822
44 Segmentation 3.25E-17 –8.589
34 CSP 1.50E-16 8.398
60 CSP 2.09E-16 8.357
65 Morphological 1.40E-15 –8.114
5 Morphological 6.41E-15 –7.915
31 CSP 8.92E-13 7.239
5 Segmentation 1.33E-12 –7.181
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These tables display the t-values and significance levels ( p-values) measured for 
the difference between the targets’ and the non targets’ corresponding features. In 
these tables the first column shows the feature number in its group. For example in 
the first row of the table 1, the number “15” indicates that between 70 intelligent 
segmentation 15th feature is selected.

Table 2. Results of comparing between target and non-target group using
statistical t-test (for Subject B)

Feature No. in Group Feature Group p_value t_value

21 Morphological 3.33E-22 9.920

56 Morphological 1.38E-20 –9.905

14 Segmentation 6.41E-20 –9.330

13 Segmentation 1.52E-16 –8.397

91 Morphological 1.93E-15 8.073

44 Segmentation 2.15E-14 –7.754

37 Morphological 6.94E-14 –7.595

105 Morphological 7.59E-13 –7.262

38 Morphological 7.127E-12 –6.937

4 Segmentation 1.63E-11 –6.813

2 Morphological 1.87E-11 –6.792

23 Segmentation 7.20E-11 –6.587

24 Segmentation 1.04E-10 –6.528

3 Morphological 7.12E-10 –6.223

3 Segmentation 7.173E-10 –6.222

69 Segmentation 9.90E-10 –6.169

33 Segmentation 1.28E-09 –6.126

14 Morphological 2.59E-09 –6.009

34 Segmentation 3.41E-09 –5.963

36 Morphological 3.92E-09 –5.939

 For a clear discussion and better comparison, in Fig. 4 the percent of each 
feature group among the features with p-value < 0.05 is shown for each of subjects, 
A and B.
 According to Fig. 4, for both subjects, the most of appropriate features (regarding 
the t-test evaluation) belong to the morphological features. The Intelligent segmenta-
tion and the CSP features come next with little difference. And finally the combined 
features have the lowest share of the suitable features.
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3.1.2. Comparison with a Common Classifier Results 

Afterwards, each of the four feature groups was evaluated by a common classifier. 
We used an LDA as the common classifier. In Table 3 the results of this comparison 
between the feature groups for each subject are illustrated. According to this table, 
among these four feature vectors, the intelligent segmentation was seen to be most 
efficient in classification of these signals for both subjects.

Fig. 4. The percent of each feature group among features with p-value < 0.05 for each subject;
Up – subject A, Down – subject B

Table 3. The results of P300 classification for each feature group by
a common classifier, LDA

Accuracy
Feature Group Subject A Subject B

Intelligent Segmentation 94% 96.1%

Morphological 89.2% 87.3%

Combined (CSP+Seg.) 86.1% 84.3%

CSP 85% 79.9%

3.2. Feature Selection Results

After applying of the SWLDA, the best feature set was determined for each subject. 
This feature set included, for the subject ‘A’: 4 features from the morphological group, 
7 features from the CSP group, 12 features from the combined group and 21 features 
from the intelligent segmentation group (a total of 44 features) and for subject ‘B’: 10 
features from the morphological group, 12 features from the CSP group, 5 features 
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from the combined group and 20 features from the intelligent segmentation group 
(47 features overall).
 As explained before, the SWLDA method was used for selection of the best 
subset of features. Figure 5 shows the percent of each feature group among the 
features selected by this method for each subject.

Fig. 5. The percent of each feature group among features selected by the SWLDA method for each subject;
Up – subject A, Down – subject B

 Figure 5 shows that in both subjects nearly half of all the selected features be-
long to the intelligent segmentation set and this result emphasizes the ability of this 
feature extraction method for our purpose (P300 detection).

3.3. Classification Results

The selected features (44 features for subject A and 47 features for subject B) were 
then used in the design of our classification system and in the analysis of the data 
as explained before. Table 4 displays the final result of our proposed system for the 
P300 detection. These results are obtained by using the selected features as an input 
for the LDA classifier.

Table 4. Results of classification for each subject

Accuracy
Subject

Target
Accuracy

Non-target
Accuracy Total Accuracy

Subject A 96.50% 97.10% 97%

Subject B 95.30% 98.40% 97.80%

Mean 95.90% 97.75% 97.40%
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4. Conclusion

The main purpose of this study was to evaluate the performance of a new classifying 
method in a P300-based BCI. For this purpose, we used a pattern recognition system 
including four main blocks: Preprocessing, feature extraction, feature evaluation and 
classification. Our emphasis was on the feature extraction block, so after preprocess-
ing, a feature set consisting of four groups of features (including intelligent segmen-
tation, CSP, combined and morphological features) were defined and extracted from 
the data. Then the features were compared with regard to the target and non target 
discrimination, by statistical analysis and the performance of a common classifier. 
After the feature evaluation, the optimal subset of the feature set was selected using 
a stepwise linear discriminant method. Then the selected features were used for the 
classification of data using the linear discriminant analysis. 
 By comparing our performance with the top of previous investigations, we 
can say that our proposed method by providing 97.4% mean accuracy for the P300 
detection, outperforms other researches done in this line of research until now. For 
example the state of the art in the BCI competition 2005 by using ensemble of the 
SVMs yielded the 96.5% accuracy. Or Salvaris with wavelet and ensemble of the 
FLDs could obtain 95% accuracy on this dataset.
 As demonstrated before the use of pattern recognition systems for the clas-
sification of the P300 has been very common. But not a very large number of 
these studies have used the features of this diversity that we used. In this paper 
we tried to extract some kind of features that have not been so useful in the P300 
detection so far. So by a suitable selection of these features and a very simple 
classifier, we could achieve a high performance. The algorithm described here is 
efficient but we think there is still room for improvements. For instance, using 
the developed methods for the feature selection or the channel selection can lead 
to better results.
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