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A class of mathematical models of biological textures based on the multi-variable probabi-
lity distributions of their morphological spectra is described. It is shown that a large class 
of such distributions can be presented by sufficient statistics consisting of the coefficients 
of their expansion into the series of multi-variable Hermite polynomials. The sufficient 
statistics can then be simplified by rejection of higher-order terms. The general concepts 
of mathematical models construction are illustrated by examples of textures of several 
biological tissues (aorta walls, liver and blood). The role of statistics based on absolute 
values of morphological spectral components and of their cross-correlation coefficients 
is underlined.
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1. Introduction

Recognition of textures plays a substantial role in computer-aided analysis of bio-
medical images aimed at discrimination of tissues or objects characterized by spe-
cific micro-morphological structure. Among numerous methods of texture analysis, 
the spectral, morphological, statistical and fractal methods are the most frequently 
used and mentioned in literature [1÷7]. However, textures are not strongly defined 
mathematical objects, so they only can be approximated by less or more adequately 
chosen formal models. The models should, in particular, reflect such typical proper-
ties of biological textures as their irregularity, spatial heterogeneity and multi-scalar 
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structure. Irregularity means that no large area segments of texture can be exactly 
represented by a functional extension of smaller area segments and thus the amount 
of information necessary for an exact description of the texture covering a part of an 
image is growing up with the area of this part. Not all textures are irregular; however, 
most of textures available in biomedical or geophysical observations are irregular. 
Spatial heterogeneity means that texture characteristics are not fixed in large image 
areas but are continuously changing without clearly visible borders. Structural multi-
scalarity of texture means a dependence of texture characteristics on the resolution 
of image presentation. For example, the texture of a forest visible in an aero-photo 
is different than this of a single tree observed from a small distance and this one is 
different than that of a single leaf surface.
 Morphological spectra (MS) are one of the concepts useful in construction of for-
mal texture models satisfying the above-mentioned requirements [8, 9]. Application 
of MS is limited to the analysis of monochromatic images given in the form of finite,
I × J-size bitmaps, I and J being some natural numbers denoting, respectively, the 
number of rows and columns of the bitmap. The elements of the bitmap (pixel bright-
ness levels) are limited non–negative real numbers; in computer image processing 
systems they are declared as integers. MS are closely related to the systems of or-
thogonal 2D Walsh functions [10], however, there are also substantial differences 
between MS and Walsh functions based approach to texture analysis, as shown in 
Table 1. In principle, MS can be extended to higher, 3D or 2D + 1 dimensions in 
order to describe volume- or time-dependent textures; however, the calculation costs 
grow exponentially with the dimensionality. Below, 2D images only and their MS 
are considered.

Table 1. Comparison of 2D Walsh functions and morphological spectra

Property \ Type of representation Systems of Walsh functions Morphological spectra
Image format fixed extendable
Image resolution unlimited fixed
Description of components functional algebraic
Components calculation ordering bottom-up top-down
Interpretation of basic geometrical 
objects’ transformations 

possible easy

Image filtering possibility through reverse transformation through reverse transforma-
tion or directly

 Despite the MS dimensionality, their properties are determined by a natural 
parameter n called MS level. In principle, any level of MS of an image contains 
complete information making exact reconstruction of the original image possible. 
However, n determines the minimum size of image that by the n-th level MS can 
be represented, because it should not be smaller than a single 2n × 2n pixels square, 
called basic window, size. Therefore, it is reasonable to choose n so as to cover, with 
limited margins, the I × J-size image by a finite number of the basic windows. The 
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 The symbols S, V, H and X used here are assigned to four basic operations per-
formed on the basic operations generating the higher-n MS components on the basis 
of the lower-n ones: a sum (S) and the differences of the vertical (V), horizontal (H) 
and diagonal (X) sums of 2 × 2 square matrix elements [8, 9].
 The aim of this paper is to present statistical models of textures based on their 
morphological spectra. The models are illustrated by the textures of selected biologi-
cal tissues: of aorta walls (as an example of anisotropic tissue) and of liver section 
(isotropic tissue). The paper is organized as follows: basic assumptions concerning 
statistical description of textures based on morphological spectra are presented in 
Sec. 2. In Sec. 3 the experimental results of analysis of selected textures analysis are 
given. 

2. Statistical Models of Texture Based on Morphological Spectra
 
A statistical description of textures is based on the following assumption:
 A texture covering a fixed image area can be considered as an instance of 
a 2D random field, whose local statistical properties are homogenous in the given 
area within an admissible accuracy interval. 
 The assumption holds thus within the limits forced by large-scale spatial hetero-
geneity of the texture. Using MS as a tool for texture description leads to an additional 
assumption:
a fixed texture observed in a given image area can be represented by a set of 
instances of random MS components, statistically independent in basic windows 
covering the area.
 The basic window are assumed to be of a square form and of 2n × 2n size, 
strongly connected with the MS level n, as illustrated in Fig. 2. An original view of 

Fig. 1. Hierarchical tree of MS components

contents of a n-th level basic window is represented by k = 4n MS components. If N 
denotes the number of basic windows covering a certain image area, then N · 4n is 
the number of MS components representing it. A hierarchical structure of MS com-
ponents is illustrated in Fig. 1.
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a texture given in the form of its MS components in a set of basic windows can be 
easily obtained by a MS reverse transformation [9]. 

Fig. 2. Image segmentation into basic windows and statistically homogenous areas

 According to the above-formulated notions it is assumed as follows:
 A statistical model of a texture θ in a narrow sense is given by a conditional 
probability distribution of a multidimensional random value Ξ describing meas-
urable texture parameters, assuming that θ has been chosen from a family Θ of 
admissible textures.
 In the case of using of MS to texture description, Ξ is interpreted as a random vec-
tor of spectral components belonging to k-dimensional linear vector space Rk, where 
k = 4n. High dimensionality of Ξ for large n makes exact description of its probabilistic 
properties an onerous task. Thus, it is necessary to find suitable approximations of 
the multidimensional probability distribution function (pdf). One of the possibilities 
consists in pdf expansion into multi-variable Hermite polynomials [10].
 Let ξ = [ξ1, ξ2,…, ξk] be a vector of observed k components of MS considered 
as instances of Ξ. It follows from the former considerations that standard values of 
k are 4n for n = 1,2,3,… etc. A class of conditional probability densities (cpd) of Ξ 
for fixed θ will be considered. Assuming that all its finite moments exist we shall 
denote by:
 µ(θ) = [µ1, µ2,…, µk] – a vector of mean values of the MS components,
[σij(θ)] for i,j = 1,2,…,k, σii > 0, – a covariance matrix of the MS components.
Then, Ξ can be replaced by a random vector Z of normalized variables:

   Z i ki
i i

ii

= − =ξ µ
σ

,   1 2, ,..., . (1)

By z = [z1, z2,...,zk] a vector of observed values (instances) of Z will be denoted and by 
wk(z|θ) – a cpd describing its probabilistic properties. Then the cpd can be expanded 
into a series of Hermite polynomials:
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denotes a (m,n,…,p)-th order Hermite polynomial;
 bm,n,…,p (θ) are quasi-moments, i.e. mean values of the conjugate Hermite poly-
nomials Gn,m,…,p(z):
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   Q*(z) = z ⋅ [ρij(θ)] ⋅ ztr. (2f)

 It should be noticed that all the cpd parameters: bm,n,…,p(θ ), µ(θ ), σij(θ ), ρij (θ ) 
depend on θ as on texture’s features. From (2c) it follows that: 10 for k = 1 the 
first Hermite polynomials have the form: H0(z) = 1, H1(z) = 2z, H2(z) = 4z2 – 2, 
H3(z) = 8z3 – 12z, etc., 20 for k > 0 and r = 0 it is: H0,0,…,0(z) ≡ 1, 30 for k > 0 and 
r = 1 it is H0,0,…,1,…,0(z) = 2Σ ki = 1ρpi zi ( p is the position whose index is 1), etc. Hence, 
a first approximation of wk (z|θ ) is given by a k-variable Gaussian distribution of the 
MS components. Moreover, it follows from (2) and (1c) that the correcting terms in 
formula (2) corresponding to r = 1 and r = 2 equal 0 due to the normalization of z. 
The first non-zero correcting terms caused by the asymmetry of pdf correspond to 
r = 3; they are represented by algebraic combinations of the moments of zi

3, zi
2zj and 

zi zj zl -type for i, j, l = 1,2,…,k. Next terms, corresponding to r = 4, 5,… etc., contribute 
to the pdf form; however, their role is the lower the higher the similarity between the 
approximated pdf and the Gaussian function is. 
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 Let us denote by S ii= [ ]σ σ ρjj ij  a covariance matrix, by M( ) ]3 = ⋅[ σ σ σ ρii jj ll ijk

– a matrix of 3rd order moments, by M( ) ]4 = ⋅[ σ σ σ ρii jj ll ijk  – a matrix of 4th order

moments of the variables z1, z2, …, zk, etc. (for the sake of simplicity, the depen-
dence of the parameters on θ being here omitted). From the fact that any r-th order 
Hermite polynomial is an algebraic combination of the up to r-th order moments, 
it follows that for a given r full information about the pdf form is contained in the 
sets of parameters shown in Table 2. Thus, the parameters can be displayed in the 
form of linear vectors which will be denoted by Φ (r)(θ), r = 1, 3, 4, 5,… Therefore, 
the following holds:
 Statistical models of a texture θ in a wide sense are given by approximations 
of sufficient statistics of conditional probability distribution of the random value 
Ξ describing measurable texture parameters, assuming that θ has been chosen 
from a family Θ of admissible textures.

Table 2. Sufficient statistics’ approximations given by the sets of parameters

r Parameters of pdf
1 µ(θ), S(θ)

3 µ(θ), S(θ), M 3( ) [ ]= •σ σ σ ρii jj ll ijl 

4 µ(θ), S(θ), M 3( ) [ ]= •σ σ σ ρii jj ll ijl , M 4( ) [ ]= •σ σ σ σ ρii jj ll mm ijlm

5 µ(θ), S(θ), M 3( ) [ ]= •σ σ σ ρii jj ll ijl , M 4( ) [ ]= •σ σ σ σ ρii jj ll mm ijlm , M 4( ) ]= ⋅[ σ σ σ σ ρii jj ll mm ijlm

etc.

Example 1
 Consider a 1st order (n = 1) MS of a texture whose pdf has been approximated by 
the first (r = 1) term of the formula (2). The MS then contains k = 4n = 4 components 
which can be denoted by zS, zV, zH, zX. If a first term approximation of wk (zS, zV, zH, zX|θ ) 
is chosen then it is fully characterized by µ(θ ) and S(θ ) only. Thus, µ(θ ) = [µS (θ ), 
µV (θ ), µH (θ ), µX (θ )] consists of 4 parameters while S(θ ) = [σij(θ )], i,j ∈ {S, V, H, 
X}, due to its symmetry, consists of ½ ⋅ 4 ⋅ 5 = 10 parameters. Thus, the correspond-
ing vector of parameters will have the following form (the dependence on θ  being 
omitted below):

Φ(1) = [µS, µV, µH, µX, σSS, σSV, σSH, σSX, σVV, σVH, σVX, σHH, σHX, σXX].

 If the above-mentioned parameters are replaced by their estimates calculated 
from observations then Φ(1) can be interpreted as sufficient statistics for estimation 
of wk(zS, zV, zH, zX|θ ) ●
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 The number of components of the sufficient statistics Φ(r) increases exponentially 
with n and r as shown in Table 3 (n = 0 corresponds to a pdf of any selected single 
spectral component). It might seem from the Table that in general, despite the fact 
that higher-level MS make it possible to inspect the existence directly and form of 
larger morphological structures, using sufficient statistics corresponding to higher 
n or r for texture analysis is unreasonable. However, it is not quite so if the below-
described multi-scalar properties of MS are taken into account.

Table 3. Number of parameters of sufficient statistics

n \ r 1 3 4

0 2 3 4

1 14 34 69

2 152 968 4844

3 2144 47844 814324

 The 2nd level components SS, VS, HS and XS divided by 4 can also be interpreted 
as 1st level components of the same image whose resolution power has been reduced 
by 2 (each pixel value being equal to 4 original pixel values forming a square). Simi-
larly, the 3rd level components SSS, SSV, SSH and SSX divided by 16 are equivalent 
to 1st level components of the image whose resolution power has been reduced by 
4, etc. Therefore, the 2nd level MS makes us able also to analyze some properties of 
the 1st level MS. This possibility has been used to compare the pdf-s of 1st level MS 
of selected tissues whose statistics has been limited by fixing the parameters r = 1 
and n = 0 and 1 (see Table 3).

3. Statistical Experiments

In order to prove the validity of using of MS to texture analysis in medical diagnosis 
several experiments have been done [9, 12, 13]. The investigations were limited to 
arbitrarily chosen lower-level spectral components and have shown that the method 
needs deeper examination of statistical properties of complete MS for some typical 
textures. Below, main results of such examinations are presented.
 The textures of three types of human biological tissues were used: a) aorta as an 
example of fibrous tissue, b) liver and c) fetal blood as examples of granular tissues. 
In addition, the anisotropic texture of aorta tissue were observed in three positions: 
a’) vertical, a”) rotated by 300 and a’’’) horizontal. The patterns visible in a’ ) and 
a’’’) are similar while this in a”) is different as being obtained by an independent 
digitization of a rotated image. Totally, this gave us 5 types of tissue images shown 
in Fig. 3 for calculation of MS and their statistical examination. 
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Fig. 3. Textures used in statistical experiments: a’), a”), a’’’) – aorta in different angular orientations,
b) liver tissue, c) fetal blood tissue

a’) a”) a’’’)

 b) c)

 The images are of 128 × 128 pixels size. They were examined by using 2nd 
level (n = 2) MS i.e. by partition into 4 × 4 pixels size basic windows. MS consists 
in this case of 16 components; moreover, as follows from Fig. 1, all higher- and/or 
lower-level MS components can be calculated on their basis. Statistical error of MS 
components’ estimation depends on the number of basic windows covering the given 
image sector. In the below-analyzed case the numbers are: 4096 for n = 1, 1024 for 
n = 2, 256 for n = 3, 64 for n = 4, etc. 

Experiment 1
For r = 0 (pdf of a single MS component) there were considered the SS components 
(representing the luminance level of pixels) of liver and blood tissue. The images are 
of different average luminance and of different granularity (see Fig. 3b and 3c). There 
were calculated the histograms of the given MS component as shown in Fig. 4.
 Not only different positions of the histograms caused by the difference of mean 
luminance levels can be observed, but also a difference of forms; the more extended 
and bimodal form of the blood texture is caused by existence in the image of dark 
large morphological structures on bright background. The difference is also reflected 
by the entropies of the histograms: 467.17 bits for liver and 1166.9 bits for blood 
tissues.
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Experiment 2
A dependence of the sign of MS components (except the SS ones) on vertical and/or 
horizontal image shifts within the basic windows [8], which is important in exact 
image reconstruction in texture analysis is a rather undesirable MS property. In order 
to make the texture recognition insensitive to small parallel image shifts, the absolute 
values of MS components instead of the real ones should be taken into account. In 
this experiment the mean values and variances of 2nd level MS components of liver 
tissue texture were calculated. In Fig. 5 the estimated real and absolute mean values 
of MS components in increasing order are presented. It should be remarked that
1st the absolute values are higher than the real ones, and 2nd the order of components 
in both cases are different: 

 real: XV, VH, XX, HH, VV, XS, HV, XH, HS, VS, SS, SX, VX, SH, SV, HX 
 absolute: XV, XS, XH, XX, VH, HV, VS, VV, SS, HS,VX, HH, HX, SX, SV, SH.

Liver tissue SS-component histogram     Blood tissue SS-component histogram

Fig. 4. Comparison of liver and fetal blood tissue SS-component histograms (presented in comparable scales)

Fig. 5. Mean values of MS components of liver tissue texture (in comparable scales): a) real, b) absolute

 a) b)
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A similar comparison of variances of the MS components’ real and absolute values 
gave the results shown in Fig. 6. In this case the variances of the absolute MS com-
ponents’ values are in general lower than those of the real ones. The orders are also 
different:
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 real: SS, XV, XS, XH, XX, HV, VH, VV, VS, VX, HX, HS, SX, SV, HH, SH
 absolute: XV, XS, XH, XX, SS, HV, VH, VV, VS, HS, VX, HX, SX, HH, SV, SH. 

a) b)

Fig. 6. Variances of MS components of liver tissue texture. Vertical scales in a) real and b) absolute 
diagrams have been presented so as to make the heights of the pairs of the corresponding components

comparable

 Despite the fact that neglecting the signs of MS components reduces the amount 
of information, absolute MS components provide a more valuable information which 
is independent of the parallel shifts of the image.

Experiment 3
 There were estimated the parameters characterizing the pdf-s of absolute 1st level 
MS components’ values of the five textures shown in Fig. 1 after reduction of their 
resolution power by 2. The statistics have been then established by the parameters 
n = 1, r = 1. Therefore, according to Table 2 the following 14 parameters were es-
timated:
a) mean values: µ|S|, µ|V|, µ|H|, µ|X|,
b) covariances: σ|SS|, σ|SV|, σ|SH|, σ|SX|, σ|V,V|, σ|VH|, σ|VX|, σ|HH|, σ|HX|, σ|XX|.
The results are shown in Table 4. It can be observed that:
 1. The cross-correlations between the spectral components |S|, |V|, |H| and |X| 
are much below their variances which means that in the considered textures the 
statistical dependencies between spectral components can be neglected at the first 
approximation level;

Table 4. Statistical parameters of absolute MS components of selected textures

  Φ(1)

θ
µ|S| µ|V| µ|H| µ|X| σ|SS| σ|SV| σ|SH| σ|SX| σ|VV| σ|VH| σ|VX| σ|HH| σ|HX| σ|XX|

a’ 27.32 15.14 7.18 1.60 78.66 0 0.01 0 172.9 0.012 0.01 35.93 0.01 1.84

a” 31.96 13.51 9.94 3.99 139.0 0 0.01 0.01 129.0 0.025 0.02 73.11 0.02 10.72
a’’’ 27.32 7.18 15.14 1.60 78.66 0 0.01 0 35.9 0.012 0.01 172.9 0.01 1.84

b 7.11 6.59 10.61 2.74 10.22 0 0 0 28.2 –0.003 0 69.5 0 4.20

c 43.81 8.69 7.79 1.29 84.4 0 0 0.01 66.0 0.017 0 52.25 0.01 1.29
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2000

0
ss xv xs xh xx hv vh vv vs vx hx hs sx sv hh sh xv xs xh xx ss hv vh vv vs hs vx hx sx hh sv sh
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1000
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 2. There is a symmetry between the textures denoted by a’ and a’’’ (obtained 
by rotation by 900) with respect to a permutation of the indexes V and H (following 
from the general MS properties);
 3. The vector Φ (1)(a’’’) due to the components µ|V|, µ|H|, σ|VV| and σ|HH| is closer 
to Φ (1)(a’) than to Φ (1)(a”). This corresponds to the fact that for a’, a” and a’’’ rep-
resenting the same tissue in different spatial orientations the dilation angle between 
a’ and a” is smaller (30º) than this between a” and a’’’ (600);
4. For the vectors Φ (1) the relative variations coefficient:

   γ = (µ |V| + µ |H| + µ |X|) /µ |S|, (3)

was calculated. This gave the results shown in Table 5:

Table 5. Relative variations coefficients of selected textures

θ a’ a” a’’’ b c
γ 0.875 0.858 0.875 2.804 0.405

 It can be remarked that the highest value of γ corresponds to the texture b 
characterized by existence of the smallest morphological structures (see Fig. 3). 
This suggests that in the case of adequately chosen MS level the relative variations 
coefficient can be used as a statistical measure of texture’s granularity.

Experiment 4
It was shown (see Table 3) that sufficient statistics for examination of 2nd level MS 
basically consists of at least 152 parameters including 16 1st order and 136 2nd order 
moments. Examination of a full cross-correlation matrix R(θ) can also be a basis of 
MS components’ informational value evaluation. The matrices R(θ) were calculated 
for θ ∈ {a’, a”, a’’’, b, c}. Examples of several series of cross-correlation coefficients 
ρpq between the MS components of the a” tissue are shown in Fig.7. In fact, the full 2nd 
order MS consists of 16 components and the cross-correlation matrix of the components 
is of 16 x 16 size, its main-diagonal elements being equal 1. The cross-correlation 
values are presented in increasing order for better visualization of the range of differ-
ences between the cross-correlations. The lengths of the rows is decreasing because 
the symmetry of the cross-correlation coefficients was taken into account; the diagonal 
elements ρpp (equal 1 by definition), have been neglected in the graphs. 
 The increasing order of the cross-correlations between the MS components contain 
an important information about their validity for tissue recognition. For this purpose 
the groups of strongly mutually correlated MS components with a negligible loss of 
recognition accuracy can be replaced by their algebraic combinations. In Table 6 all 
pairs of the MS components ordered according to the increasing order of their cross-
correlation coefficients are presented. First four rows of this Table indicate the order 
of components held also in the horizontal elements shown in Fig. 7 a,b,c,d. Generally 
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speaking, the larger the row-distance of a MS-component to the corresponding diagonal 
element is the higher the cross-correlation between the components is.

Fig. 7. Cross-correlation values between the 2nd level MS components in a” (aorta tissue) image.
(for denotations of horizontal coordinates see Table 6)

a) HH-q

b) HS-q

c) HV-q

d) HX-q
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Table 6. Order of increasing cross-correlations between the 2nd level MS components

# p-q
p- 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

a) HH- SV SX SS SH HX VX VS XH VV XV HS XS VH HV XX

b) HS- – SH SX VX SS HX SV VH XX XH VV XV XS HV VS

c) HV- – – SX VX SS HX SH SV XH XX XV VH VV XS VS

d) HX- – – – XX XV VV XS XH VH VS SV SH SS SX VX

e) SH- – – – – XS VV XV XX VH HX VS VX SX SV SS

f) SS- – – – – – XS VV XX XV VH SV VS XH VX SX

g) SV- – – – – – – XS XH XX XV VV VH VS VX SX

h) SX- – – – – – – – VV XX XV XS XH VH VS VX

i) VH- – – – – – – – – VX XH VS XV XX XS VV

j) VS- – – – – – – – – – VX XX XH XV XS VV

k) VV- – – – – – – – – – – VX XS XV XH XX

l) VX- – – – – – – – – – – – XH XS XV XX

m) XH- – – – – – – – – – – – – XV XS XX

n) XS- – – – – – – – – – – – – – XX XV

o) XV- – – – – – – – – – – – – – – XX

 Having given a sample of a texture, deciding, which of its MS components are 
the most suitable to the texture characterization is not a simple task. The widely 
known method of reduction of the sets of physical objects describing parameters, 
used in pattern recognition, is based on the calculation and analysis of the Eigen-
values and Eigen-vectors of the covariance matrix S(θ) [14]. However, the example 
shows that a rough solution of this problem can be based on a primary analysis 
of the increasing order of cross-correlation coefficients of the parameters (which, 
so or so, for exact solution also should be calculated). Of course, in each case of 
texture analysis a subset of the most suitable for a given texture characterization 
MS components may be different. In the above-presented case the highest cross-
correlations were observed between the pairs (p-q) of MS components shown in 
Table 7.

Table 7. The highest cross-correlations between the pairs of MS components

p-q VX-HX SX-HX SX-VX SS-SX SS-HX SS-VX SS-SH SV-SH SH-SX SH-HX SH-VX

σpq 0.97 0.92 0.92 0.91 0.88 0.87 0.79 0.60 0.58 0.57 0.54
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 These relationships can also be illustrated by a graph of cross-correlations shown 
in Fig. 8.
 Analysis of the graph shows that the modules |SS|, |SX|, |VX| and |HX| of MS 
components are mutually strongly correlated. This suggests that for characterizing 
of the given type of texture (a”) a reduced statistic:

   Z = |SS| + |SX| + |VX| + |HX| (4)

instead of its separate components without a substantial loss of information can be 
used. However, a reduction of sufficient statistics for several textures discrimination 
purpose is possible only if the same clusters of MS components in all discriminated 
textures occur. In particular, in texture analysis based on higher-level MS such clus-
ters should correspond to subsets of morphological micro-structures invariant with 
respect to parallel translations.

4. Conclusions

Morphological spectra are a general, theoretically well-founded tool for texture 
analysis. However, like other general tools (e.g. Fourier spectra, Markov fields, 
fractals, etc.) they should be modified in order to become more effective in the given 
individual texture analysis problems. Most of textures analyzed in biomedical appli-
cations can be considered as random fields. The corresponding mathematical models 
may have the form of conditional probability distributions or of such distributions 
representing sufficient statistics. The probability distributions may concern various 
types of parameters describing the texture, one of them being the MS components. 

Fig. 8. A graph of the highest cross-correlations between the pairs of MS components



33Description of Biomedical Textures...

Even having this point established there remain the problems: what MS level, which 
MS components or their algebraic combinations, on what statistical accuracy level 
should be established in order to make the texture analysis effective. In this paper 
it has been shown and illustrated by examples that using the modules or using the 
sums of selected modules of MS components instead of MS real values may lead to 
better results in statistical characterization of the classes of the textures satisfying 
some geometrical transformation invariance conditions. Analysis of cross-correla-
tions between the modules of MS components gives also an inspection into statisti-
cal dependencies between them and may suggest possible ways of reduction of the 
number of parameters necessary to describe the given class of textures. However, the 
problem of informative value of higher-level moments describing the non-Gaussian 
probability distributions of random MS components is still not quite clear and needs 
deeper investigations. 
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