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The compartmental models, as Hovorka’s one, are usually exact but complicated. Thus, they 
are not suitable for direct usage in nonlinear predictive controllers because of complexity of 
the resulting controller and numerical problems that may occur. Thus, simplified nonlinear 
(neural and fuzzy) models are developed in this paper for the future use in the predictive algo-
rithms. Training and structure selection issues are discussed in the context of neural models. 
The heuristic, easy to obtain, Takagi-Sugeno fuzzy model composed of the control plant step 
responses is also designed. It is shown that in case of the considered biological process both 
nonlinear models have significantly better approximation abilities than linear ones.
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1. Introduction

Epidemiological data indicate that diabetes is one of common lifestyle diseases. 
Long-term consequences of decompensated glucose concentration lead to severe 
decreasing of health status and dramatically increasing costs of rehabilitation. Thus, 
large efforts are undertaken in pharmacology and biomedical engineering to control 
glucose concentration by proper insulin dosing. Significant intra- and interpersonal 
variability cause that it is difficult to determine insulin dose for a particular subject. 
For example, the variability of overnight insulin requirement may result from decreas-
ing of peripheral insulin sensitivity caused by elevated levels of growth hormone, 
cortisol and catecholamine which are antagonistic to insulin. This phenomenon is 
known as “dawn phenomenon” [1]. Other possible causes of intrapersonal variability 



42 D. Radomski et al.

of an insulin dose may be  rebound hyperglycemia after nocturnal hypoglycemia 
(Somogyi phenomenon [1]), day-to-day variability of subcutaneous absorption of 
insulin preparations [2] or defective glucose counterregulation [3]. Therefore, the 
closed loop control techniques are developed to maintain physiological glucose 
level [4].
 The study performed by Hernjak and Doyle showed that model-free control 
algorithms e.g. PID were unstable and ineffective for the considered control problem 
[5]. Therefore the model based algorithms were recommended. Selection of an ad-
equate process model is a pivotal problem. Some of the published control strategies, 
especially predictive control algorithms were designed on basis of a black box, linear 
model of insulin-glucose dynamics [4]. However, the physiological studies confirm 
that nonlinear models are more suitable for the control purpose. Several such models 
are published in the literature [6]. All of them can be arranged hierarchically driven 
by physiological details included in the model. The source model for the more com-
prehensive models was the Bergman’s minimal model [6]. It represents dynamics of 
insulin and glucose concentrations as well as dynamics of insulin actions. However, 
this model has some physiological and mathematical drawbacks. The model has been 
developed on the basis of assumption stating that the plasma glucose and insulin 
compartments are independent and can be identified independently. Moreover, the 
model contains an “artificial” non-observable variable to model a delay in the in-
sulin action. The equation associated with the introduced variable makes the model 
identification difficult. From the mathematical point of view the minimal model can 
produce physiologically unreliable results (e.g. problems of positive equilibrium and 
unbounded solutions) [6].
 Numerous models published in literature are the extended version of the minimal 
model. Examples of such extensions compose models were proposed by Fabiatti et al. 
and Havorka et al. [7, 8] .These models have similar structures consisting of a model 
of insulin kinetics and dynamics and a model of glucose kinetics and dynamic. The 
mathematical descriptions of common submodels are similar in these two models. 
 Additionally, the model introduced by Fabiatti et al. takes hepatic balance 
into account. It enables for modeling of glucose absorption from a meal or OGTT. 
Moreover, a model of circadian glucose variability is added. However, the form of 
this part is doubtful from physiological point of view.
 In the presented study simplified neural and fuzzy models for numerically ef-
ficient nonlinear predictive control of insulin dosage are developed. The Hovorka’s 
model is treated as a reference one. This model represents the input-output relation-
ship between subcutaneous insulin infusion and intravenous glucose concentration 
[8]. Meal ingestion is an additional input which can be treated as a disturbance. The 
model consists of a glucose subsystem (modeling glucose absorption, distribution 
and disposal), an insulin subsystem (modeling insulin absorption, distribution and 
disposal) and an insulin action subsystem (modeling insulin action on glucose trans-
port, disposal and endogenous production). The mathematical formulas of the model 
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are presented in details in [8]. Because the model contains some nonlinearities the 
model dynamic is  highly nonlinear. It can be easily observed analyzing steady–state 
characteristics and step responses of the Hovorka’s model (Fig. 1). The step responses 
were collected for six positive changes of the insulin dose 0.01 U/L each and six 
negative changes–0.01U/L each. In the following part of the paper y denotes glucose 
concentration and u insulin dose. From the perspective of control algorithm, the 
insulin dose is the input (the manipulated variable) of the whole dynamic system, 
the glucose concentration is the output (the controlled variable) of the system.

Fig. 1. The steady-state characteristic (left) and step responses of the process (right) of the Hovorka’s
model, u – insulin dose (U/L), y – glucose concentration (mmol/L)
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2. Models for Predictive Control of Insulin Administration

Model Predictive Control (MPC) is an advanced control technique which is success-
ful in practice [9, 10, 11]. In comparison with classical control techniques (e.g. the 
PID approach), MPC algorithms can take into account constraints imposed on both 
process inputs (manipulated variables) and outputs (controlled variables), which usu-
ally decide on quality, economic efficiency and safety. Moreover, MPC techniques 
are very efficient in multivariable process control and in case of processes which 
dynamic properties make control difficult (e.g. processes with time-delays or with 
inverse step-responses).
 The compartmental models, as Hovorka’s one, are usually exact but compli-
cated. In theory, it is possible to use such models directly in nonlinear predictive 
controllers. Unfortunately, such control algorithms must solve a set of nonlinear 
differential equations comprising the model at each sampling instant on-line. It is 
computationally inefficient and numerical problems are unavoidable.
 On the one hand, the model used by a predictive control algorithm should be as 
exact as possible. On the other hand, some model inaccuracies are compensated in 
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the feedback control system. Thus, simplified nonlinear (neural and fuzzy) models 
are designed for the future use in the predictive algorithms. Then these models 
can be used in such a way that numerically efficient predictive algorithms will be 
obtained.
 Neural and fuzzy nonlinear models can be used to model highly nonlinear control 
plants. They are able to approximate precisely nonlinear behaviour of technological 
dynamic processes [12–15]. These models have relatively simple and regular struc-
tures. Well designed models have relatively small number of parameters. Identifica-
tion process of such models is also simple. Neural models can be easy trained using 
recorded sets of input and output process data and learning algorithms. Fuzzy models 
may be designed using heuristic approach and expert knowledge. These types of 
models are usually input-output models which do not demand solving of differential 
or algebraic equations. Therefore they can be easier used in the predictive algorithms. 
It is necessary to mention one main disadvantage of approximate neural and fuzzy 
models. Unlike the fundamental compartmental model, approximate models do not 
have any clear interpretation, they are black-box-models.
 Predictive control algorithms based on neural or fuzzy models can be formulated 
in such a way that they demand solving of only quadratic optimization problem at 
each iteration. Thus, they are much more numerically efficient than algorithms which 
use full nonlinear optimization. Despite their relative simplicity they make possible 
improvement of control system operation comparing to algorithms based on linear 
models.

2.1. Multi Layer Perceptron (MLP) Neural Network

The single-input single-output (SISO) neural model of the process is described by 
the following nonlinear discrete-time equation:
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where f n nA B:ℜ → ℜ+ − +τ 1 , τ ≤ nB . A feedforward MLP neural network (Multi Layer 
Perceptron) with one hidden layer and a linear output [12] is used as the function 
f in (1). The structure of the neural model is depicted in Fig. 2. The output of the 
model can be expressed as:
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where zi (k) are sums of inputs of the i th hidden node, ϕ :ℜ → ℜ  is the nonlinear 
transfer function (e.g. the hyperbolic tangent), and K is the number of hidden nodes. 
Recalling input arguments of the general neural model (1) one has:
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where I nu B= − +τ 1 . Weights of the network are denoted by wi j,
1 , i = 1 ,..., K, 

j = 0 ,..., nA + nB – τ + 1, and wi
2 , i = 0 ,..., K, for the first and the second layer, re-

spectively. Combining equations (2) and (3) one obtains:
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Fig. 2. The structure of the neural model

 For the identification experiment the reference model [8] is used as the real 
process, in order to obtain two sets of data, namely training and test data sets de-
picted in Fig. 3 open-loop off-line operation is simulated). As the input sequence 
pseudorandom step changes are used. Both sets contain 2000 samples, the sampling 
time is 15 min. The output signal contains a small measurement noise.
Second-order dynamic neural models:

   y k f u k u k y k y k( ) ( ( ), ( ), ( ), ( ))= − − − −1 2 1 2  (5)

are considered. Because input and output process variables have different or-
der of magnitude, they are scaled as u: = 10(u – u0), y: = 0.1(G – G0) where 
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u0 = 0.09183771738300 and G0 = 6 correspond to the nominal operating conditions 
of the process. All compared neural models have the same arguments determined 
by τ = 1, nA = nB = 2, the difference is in the number of hidden nodes K. Hyperbolic 
tangent transfer function is used in the hidden layer. During the training the follow-
ing Sum of Squared Errors cost function is minimized:

   SSE y k k y k
k

= − −
∈
∑ ( ( | ) ( ))1 2

data set

 (6)

where y k k( | )−1  denotes the output of the model for the sampling instant k calcu-
lated from the neural model at the sampling instant k – 1, y (k) is the real value of the 
process output variable collected during the identification experiment. 
 For training purposes, different unconstrained optimisation algorithms have 
been tested: the rudimentary backpropagation scheme (i.e. the steepest descent), the 
conjugate gradient methods (Polak-Ribiere, Fletcher-Reeves) and the quasi-Newton 
algorithms (the David-Fletcher-Powell algorithm or the Broyden–Fletcher–Gold-
farb–Shanno known as BFGS method) [16]. Finally, all neural models are trained 
using the BFGS algorithm, which outperforms all the aforementioned competitors 
in terms of learning time. As the number of model parameters (weights) influences 
the prediction accuracy, neural networks with different numbers of hidden nodes are 
considered (K = 3, 4, 5, 6, 7, 8).
 Accuracy of the neural models in terms of Sum of Squared Errors for training 
and test data sets is compared in Table 1. For each neural model structure the identi-
fication experiment is repeated 10 times, weights of neural networks are initialised 
randomly. The results presented are the best obtained. The influence of the number 
of hidden nodes K on accuracy of the neural models for training and test data sets is 
also depicted in Fig. 4.

Fig. 3. Training and test data sets, u – insulin dose (U/L), y – glucose concentration (mmol/L)
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 On the one hand, increasing the number of hidden nodes leads to reducing the 
SSE performance index for the training data set. On the other hand, it is a well-known 
fact that neural networks with too many parameters have poor generalisation abili-
ties (overfitting). It is easily observed in the case of neural models of the considered 
process. For the test data set the value of the SSE performance index rapidly increases 
when K > 6. That is why, the neural model with K = 6 hidden nodes is chosen as it 
gives small prediction errors for both training and data set. The output of the process 
and the output the neural model are shown in Fig. 5. Weights of the neural model 
are given in Table 2.
 Although in this paper only second-order dynamic models are described, 
during the research carried out first-order (τ = nA = nB = 1) and third-order (τ =1, 
nA = nB = 3) models were also considered. On the one hand, the first-order models 
turn out to be insufficiently accurate when compared to the second-order ones. On 
the other hand, the third-order models, are unable to give any significant reduction 

Table 1. Accuracy of neural models in terms of Sum of Squared Errors

K Training Test

3 2.550950e–1 3.147607e–1

4 1.958348e–1 4.072323e–1

5 1.502756e–1 3.496883e–1

6 1.013348e–1 1.506407e–1

7 1.005943e–1 3.885861e–1

8 9.040062e–2 5.518186e–1

Fig. 4. The influence of the number of hidden nodes K on accuracy of the neural models for training
 and test data sets
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of the SSE  performance index when compared to the second-order models. As 
a result, second-order dynamics is chosen as a good compromise between accuracy 
and complexity.

Fig. 5. The process (solid line with dots) vs. the neural model (dashed line with circles) for training and
 test data sets, y – glucose concentration (mmol/L)

Table 2. Weights of the chosen neural model with K=6 hidden nodes

w1 0
1 2 472 1, .= −e w1 1

1 8 260 2, .= −e w1 2
1 1 052 1, .= − −e w1 3

1 1 194 0, .= +e w1 4
1 2 548 1, .= −e

w2 0
1 1 788 0, .= − +e

–
w2 1

1 1 566 1, .= − −e w2 2
1 4 390 1, .= − −e w2 3

1 1 331 0, .= +e w2 4
1 1 038 0, .= +e

w3 0
1 9 152 1, .= −e w3 1

1 1 586 2, .= − −e w3 2
1 2 364 2, .= −e w3 3

1 1 355 0, .= − +e w3 4
1 6 540 1, .= −e

 
w4 0

1 5 115 1, .= − −e w4 1
1 5 748 1, .= − −e w4 2

1 5 943 1, .= − −e w4 3
1 5 174 1, .= −e w4 4

1 5 566 1, .= −e
 

w5 0
1 5 136 1, .= −e w5 1

1 4 0606 1, .= −e w5 2
1 1 452 0, .= +e w5 3

1 6 083 1, .= −e w5 4
1 3 978 1, .= − −e

w6 0
1 1 623 1, .= − −e w6 1

1 2 357 1, .= − −e w6 2
1 2 955 1, .= −e w6 3

1 5 848 1, .= −e w6 4
1 2 410 0, .= − +e

w0
2 8 187 1= −. e w1

2 7 612 1= −. e w2
2 3 113 3= −. e w3

2 1 320 0= − +. e

w4
2 2 490 3= −. e w5

2 3 910 4= −. e w6
2 2 721 1= −. e

 The neural network is able to model the process with a very high accuracy. It 
is an interesting question if a linear model with constant parameters would lead to 
similar modelling accuracy. The linear second-order dynamic model:

   y(k) = b1u(k – 1) + b2u(k – 2) – a1y(k – 1) – a2 y(k – 2) (7)

is found by means of the standard least-squares algorithm. The linear model has the 
same input arguments as the neural one (5). In Figure 6 the output of the process 
and the output of the linear model for both training and test data sets are compared. 
Output Samples (solid line) are the same as in Fig. 3 and Fig. 5. For the training data 
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set SSE = 1.026402e + 004, for the test data set SSE = 1.220843e + 004. Unfortunately, 
because the steady-state characteristic and step-responses of the process are signifi-
cantly nonlinear as shown in Fig. 1, accuracy of the linear model is also low. Output 
of the linear model gives negative values which have no physiological meaning.
 One can easily see that the neural model, unlike the linear one, is able to very 
precisely predict behaviour of the process. Hence, the neural model with K = 6
hidden nodes is recommended to be next used in MPC algorithms.

Fig. 6. The process (solid line) vs. the linear model (dashed line) for training and test data sets,
y – glucose concentration (mmol/L)

2.2. Takagi–Sugeno Fuzzy Model

During research the Takagi–Sugeno (TS) fuzzy process model with local models 
in the form of step responses is considered [17]. Such a model is relatively easy to 
obtain. It is sufficient to collect a few step responses of the control plant near a few 
operating points (three in the case under consideration). The membership functions 
can be chosen using expert knowledge, simulation experiments or fuzzy neural net-
works. Thus the discussed model is described by the following rules:
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in the f th local model describing influence of the mth input on the jth output, pd is 
equal to the number of sampling instants after which the coefficients of the step re-
sponses can be assumed as settled, c j,f are constant values, jy = 1,…, ny, ju = 1,…, nu,
f = 1,…, l, l is number of rules.
 For current sampling instant using: current values of process variables, the TS 
model (8) and fuzzy reasoning, the following model is obtained (it is in fact the step 
response control plant model valid for current values of process variables):
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where �yk
j  is the j th output of the control plant model at the k th sampling instant,
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, and �wf  are the normalized weights; see e.g.

[13, 14].
 For the control plant under consideration three step responses were obtained 
from environs of the following operation points: u = 0.092, y = 6; u = 0.077, y = 9.95; 
u = 0.112, y = 4.043. These points were chosen after analysis of the steady–state 
characteristic of the reference model (one local model per one linear region). The 
membership functions shown in Fig. 7 were assumed.

Fig. 7. Membership functions of the TS fuzzy model; µ – membership value, y – glucose concentra-
tion (mmol/L)

2.3. Comparison of Models

In case of the linear model (Fig. 8) the step responses differ significantly from the 
responses of the Hovorka’s model. During the experiment the step responses for 
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four positive changes of the insulin dose: ∆u = 0.01 U/L, ∆u = 0.02 U/L, ∆u = 0.03 
U/L and ∆u=0.04 U/L and four negative changes ∆u = –0.01 U/L, ∆u = –0.02 U/L, 
∆u = –0.03 U/L and ∆u = –0.04 U/L were obtained. In the case of changes towards 
small values of glucose concentration (negative values have actually none biological 
meaning). On the other hand, responses generated by the fuzzy TS model are much 
better (Fig. 9 right), despite relative simplicity of the TS model. There are some dif-
ferences but the model is sufficient for control purposes. 

Fig. 8. Step responses of the Hovorka’s model (solid lines) and the linear model (dashed lines),
y – glucose concentration (mmol/L)

Fig. 9. Step responses of the Hovorka’s model (solid lines) and the designed models (dashed lines):
left – the neural model, right – the TS fuzzy model, y – glucose concentration (mmol/L)

 For comparison, also step responses obtained using the neural model are drawn 
(Fig. 9 left). Both nonlinear models are much better than the linear model thus the pre-
dictive algorithms based on them should be better than those based on linear models, 
like proposed, e.g. in [18]. The neural model is slightly better tuned than the fuzzy 
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one. However, in case of the TS fuzzy model much simpler identification procedure 
was used. Moreover, if needed, the TS model may be easily extended introducing 
next local model(s) (next step response collected and added to the model).

3. Conclusions and Future Work

The process of glucose concentration changes is highly nonlinear. To model this 
process both: neural and fuzzy models are used. On the one hand, in comparison with 
the linear model both classes of models have high accuracy. On the other hand, there 
are some differences between neural and fuzzy models. Neural models (in this work 
Multi Layer Perceptron networks are used) are universal approximators which means 
that a network with at least one hidden layer can approximate any smooth function 
to an arbitrary degree of accuracy. However, from the practical point of view, good 
models should be both relatively accurate and moderately complex. That is why topo-
logy selection of neural network model is discussed in this paper. Although the RBF 
(Radial Basis Function) can be also employed for modeling of glucose concentration 
dynamics as described in [19]. Unfortunately, the RBF networks usually need much 
more parameters (weights) than the MLP structures of comparable accuracy.
 Neural network training is in fact an unconstrained nonlinear optimisation prob-
lem. During model structure selection many candidate networks are usually trained. 
In contrast, the fuzzy model can be designed in relatively easy way by collection of 
a few step responses of the process and by using expert knowledge to shape mem-
bership functions.
 As the future work authors plan to use both classes of models in computationally 
efficient predictive control algorithms in which neural and fuzzy models are succes-
sively linearized on-line. These algorithms offer much better control performance 
than the algorithms based on linear models [17, 20, 11]. Moreover, their closed-loop 
accuracy is similar to that obtained in predictive control algorithms with full nonlin-
ear optimization repeated on-line. Though simple, such algorithms offer advantages 
resulting from its prediction capabilities and therefore, if well tuned, outperform 
non–predictive controllers like e.g. one described in [21].
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