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In the paper, preliminary results for the classification of microcalcifications (MCs) into the 
three BIRADS™ morphologic categories (punctate, pleomorphic and linear) are presented. 
To classify the microcalcifications into morphologic types the set of 27 shape descriptors 
was constructed. The morphology of the cluster was determined as the mean values of shape 
descriptors for single microcalcifications. SVM classifier was used to differentiate MCs 
clusters into BI-RADS morphologic types. Classification of the clustered MCs into linear 
or pleomorphic morphologic types obtained accuracy ranging from 84 to 88% depending 
on the MCs features and the SVM parameters. The most discriminate features for the clas-
sification of clustered linear and pleomorphic MCs are: inner compactness, major axis and 
first invariant shape moment calculated from binary image of segmented MCs. 

K e y w o r d s: clustered microcalcifications, microcalcifications morphology, BI-RADS, 
classification, SVM (Support Vector Machine)

1. Introduction

Breast cancer remains the most frequently diagnosed female malignancy in the in-
dustrialized countries. Currently, the most effective and most commonly used tool for 
early detection of breast cancer is screening mammography. Clustered microcalcifica-
tions (CMCs) are one of the mammographic hallmarks of the early breast cancer, and 
their description for diagnostic classification still remains a complex and challenging 
task. An ability of breast cancer diagnosis according to standard expert procedures is 
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limited due to many technological and human factors [1]. Thus the procedures with 
second-look support of computer aided diagnosis (CAD) systems were optimized 
and became useful last years [2, 3]. However, automatic interpretation of the image 
content including CMCs offers still unsatisfied efficiency for significant number of 
applications due to almost unlimited pathology pattern variability and lack of case-
invariant lesion descriptors.  

1.1. The Problem Statement

The classification of MCs in CAD system is composed of two stages, the first – de-
tection, and the second – diagnosis of MCs. In the first stage the lesion is localized 
by some automated techniques, and in the second stage classified for determining 
its character as malignant or benign. The goal of the detection stage is to improve 
sensitivity, in the second stage the specificity is improved. The methods used for 
detection and diagnostic classification of MCs were studied to a large extent in the 
literature with pointed out limitations [4]. The estimation of lesion diagnostic char-
acteristics is based on different specific features of MCs, including the morphology 
as one of the important factors. Lesion descriptors are used to classify a case and to 
formulate its automatic interpretation as malignant or benign [5]. However, expert 
decision making for diagnosis and therapy suggestions in practice is much more 
complex and fuzzy. The BI-RADS™ system [5] was designed to provide a stand-
ardized terminology for lesion description and reporting, to improve accuracy and 
consistency of the mammographic interpretation and in consequence to decrease the 
variability in radiologist’s opinions. Several studies evaluated the system usefulness 
[1, 6, 7]. They report on improvement in consistency of observers’ opinions when the 
BI-RADS™ controlled vocabulary is used for lesion description [6,7], but relatively 
large inter-observer variability, especially in interpretation of microcalcification 
clusters still remains [1]. 
 The classification of clustered microcalcifications into the BI-RADS™ mor-
phological categories, the aim of the paper, has a number of potential applications. 
Describing the lesion features into the BI-RADS™ morphologic categories that 
reflects human experts’ reasoning using numerical descriptors is expected to make 
automatic diagnosis process more evidence-based, objective with case-invariant 
high performance. In details, potential applications firstly address the problem of 
the observer variability in the interpretation of mammographic features. Associating 
the important semantic categories with numeric descriptors and similarity measures 
has the potential to decrease the variability in lesion description and thus partially in 
interpretation. Another potential field of applications of lesion numeric descriptors 
is the CBIR system [8]. In the medical imaging context, the main aim of the CBIR 
(Content Based Image Retrieval) system is to provide radiologists with a diagnostic 
aid in the form of a display of cases relevant to the query, with proven pathology 
and clinical information. According to [8] one of the main obstacles to the use of 
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CBIR in medicine includes lack of effective representation of the medical content 
by low-level mathematical features. The key to the successful CBIR system lies in 
the use of quantitative features reflecting the salient characteristics of the patholo-
gies and appropriate similarity metrics. The relevant salient characteristics of the 
lesion include not only its diagnosis but also a number of other important features, 
the morphology in the case of CMCs. 
 We studied the classification of MCs into the BI-RADS™ morphologic cat-
egories. It is assumed that a lesion is already detected and segmented and initially 
uses only shapes features. The research clue is association of the objective numeric 
descriptors of MCs with terms used in the BI-RADS™ system for automatic describ-
ing morphology of MCs There are some papers [9–11] on classifying of shapes of 
mammographic masses, which showed promising results, but to the best of the authors 
knowledge very little work has been done to classify CMCs into the BI-RADS™ 
morphologic categories. 

1.2.  The Assumptions and the Stages 

The BI-RADS™ system includes terms for describing the calcifications’ morphology. 
The main morphologic types of MCs are punctate (round), pleomorphic and linear. 
Examples of typical and regular punctate, pleomorphic and linear MCs’ clusters are 
presented in Fig. 1, with schemas in black and white showing typical shapes of the 
punctate, pleomorphic and linear MCs. The radiologist determines cluster morphology 
based on the presence and the prevalence of MCs with geometric properties typical 
for given morphology. If MCs are characterized with a set of descriptors that are able 
to capture the salient features of their geometry, it should be possible to determine 
the whole cluster morphology as the mean values of shape descriptors for single 
microcalcifications. This rather simplified approach assumes that the number of MCS 
with typical shapes in a cluster is sufficiently large, what is not always true. 
 As it was reported in [12], shape features (compactness, difference of shape 
moments ShM1-ShM2 and Fourier shape measure applied to a set of 143 single 
MCs) can classify MCs as benign or malignant with high accuracy. That’s why any 
classification of MCs based on the shape features should be carefully designed. For 
the pilot study it was decided to perform classification only on malignant, more ir-
regular MCs. The main reason for this decision was elimination of any interpretation 
problems due to possible double features’ significance and keeping the statistical 
issues as simple as possible and providing a reasonable number of cases.
 To evaluate the appropriateness of shape descriptors (described in more details 
in section 2), it was decided to conduct a feasibility study by classifying in the first 
attempt the sets composed of single MCs (SMCs) representing the typical features 
of the investigated morphologic categories. Not all MCs in a cluster have to be 
representative for the cluster morphology. For example round MCs can be found in 
clusters of all morphological types, single pleomorphic MCs more or less regular can 
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also be found in round or linear clusters (see Fig. 1). The three sets were composed 
of single MCs showing geometrical features of the morphologic categories under 
investigations, with little irregularity, all MCs have been extracted from malignant 
clusters. The sets of SMCs were used in three binary classifications: linear – pleomor-
phic SMCs, linear – round SMCs and pleomorphic – round SMCs.  All classification 
tasks showed very promising results, proving the usefulness of the descriptor set, 
and the initial set of the shape descriptors was applied to the classification of real 
lesions as linear CMCs or pleomorphic CMCs. The morphology of typical linear 
and pleomorphic MCs differ more than in the case of linear and round MCs but less 
then in the case of round and pleomorphic MCs, representing an intermediate level 
of difficulty between the three classifications tasks.  
 The paper is organized as follows: first section introduces the aim of the work, 
second section describes samples for the two classifications stages, set of shape 
descriptors, features selection methods and classifier; third part presents classifica-

Fig. 1. Examples of typical clustered punctate, pleomorphic and linear MCs presented in panels  numbered 
from 1 to 6. In black quadrant showed in white typical shapes of punctate, pleomorphic and linear 
MCs. Black envelopes around MCs’ (panels 1, 2, 4, 5) – clusters outlines marked by MammoViewer. 
Ovals in light grey – lesions localization marked in DDSM (panels 3, 5, 6). Morphology of the cluster 
is important but not always the decisive feature for predicting cluster diagnosis, there are benign and

 malignant clusters in every morphologic category, but with different probability
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tion results: achieved accuracy and the most discriminate features; fourth section 
concludes the paper.

2. Material and Methods

2.1 Material for the Classifications 

The images containing clusters of MCs for this study were obtained from the  Digital 
Database for Screening Mammography, the largest publicly available data-set of 
digitized mammograms [13]. Material for the classifications of SMCs’ sets has 
been collected from 15 clusters of punctate MCs, 28 clusters of pleomorphic MCs,
10 clusters of linear MCs. Three from linear clusters have been segmented from 
the area of segmental (segmental MCs occupy large area of the breast). Each set of 
SMCs, round, pleomorphic and linear contained 120 objects. 
 Material for the classification of the cluster morphology has been collected from 
45 pleomorphic clusters, 37 linear clusters and 7 areas of segmental linear microcalci-
fications. Data sets for cluster classification into BI-RADS™ morphologic categories 
consisted of 45 pleomorphic clusters and 44 linear clusters, in total 89 clusters. All 
the clusters and segmental MCs were segmented from DDSM catalogues containing 
malignant lesions.

2.2. Features Set, Selection Methods and Classification

MammoViewer [10], a computer aided diagnosis (CAD) application for X-ray mam-
mograms, was used to segment single MCs, MCs clusters and for feature extraction. 
Shape features were extracted from boundaries of MCs and from binary images 
of the segmented MCs. The geometric features of MCs were characterized with 27 
shape descriptors described in the general literature for shape analysis [15–17] and 
in the analysis of MCs features [12, 18, 19]. According to their intended role in the 
morphologic analysis, all these features can be divided into three main groups: 
 1) general shape features – area, perimeter, shape moments and binary invariants 
moments and moment ratios ( called effective radiuses),
 2) shape features reflecting the visual properties of MCs morphology – compact-
ness, elongation, major axis, box ratio, ellipticity and triangularity, 
 3) features measuring irregularity of the shape – first irregularity descriptor com-
puted as difference of shape moments (ShM3-ShM1) , second irregularity descriptor 
computed as the squares of distances of contour points from the region centroid and 
normalized Fourier Shape Measure [20].
 Before selection and classification, the features were normalized to have a mean 
of zero and standard deviation of one. The data in each of four data sets ( three sets 
of single MCs and one of clustered MCs) were randomly sorted and divided into 
training and testing sets. The training and testing sets for the classification of single 
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MCs contained 60 objects each, for the classification of CMCs the training and test 
sets count 45 and 44 clusters respectively. 
 To reduce the initial set of MCs features Feature Selection and Classification Tool 
[21] software (FSCT) was applied. The features selection methods implemented in the 
FSCT which yielded the best classification results are Corrcoef [22, 23], GFlip [24], 
Simba [19] and Relief [23]. Feature selection resulted in a relatively small feature 
vector – four descriptors in the case of the sets of SMCs, and three descriptors 
for CMCs ( see section Results). The selected features were employed to differenti-
ate between MCs morphology types using the SVM classifier. The SVM technique 
[24] was chosen, because of its good performance when applied to data outside the 
training set [25]. SVM was already applied with good results to the problem of MCs’ 
classification [26–28]. In the case of SMCs’ sets the effects of the feature selection 
on classification accuracy were checked using the SVM classifier embedded in the 
FSCT, with the RBF kernel recommended for its general good performance, and with 
the penalty parameter C = 1. Classification accuracy for the linear and pleomorphic 
CMCs was estimated with more precision using the SVM classifier  implemented 
in Data Mining module of Statistica ver. 8.0. Four kernels, linear, polynomial, RBF 
and sigmoid were checked, and the SVM parameters including the kernel parameters 
were optimized using embedded cross-validation methodology. 

3. Results

Accuracy achieved in classification among the three sets of the single MCs is very 
high, ranging from 94% to 100%, depending on the classification task (see Table 1). 
This good result is certainly due to the regularity of MCs’ shapes in the three sets.
 According to the intuition, the set of the most discriminative features selected by 
Corrcoef method is the same for both linear – pleomorphic SMCs and linear – round 
SMCs classification tasks.
 Classification accuracy in differentiation of the real lesions, linear and pleomor-
phic CMCs is lower than accuracy for pleomorphic and linear SMCs’ sets because 
real clusters contain irregular and atypical MCs. For the test sample, the classifica-
tion accuracy ranges from 84% to 88%, depending on the features and the SVM 
parameters, the type of kernel functions which yields the best results, sigmoidal and 
RBF, indicates that the sets of clusters are not linearly separable. Detailed results are 
presented in the Table 2. 
 The difference between morphology of typical linear and typical pleomorphic 
MCs is less than in the case of linear and round MCs, and the set of best discriminative 
features selected with the CorrCoef method is the same for both classification tasks. 
Taking it into consideration, it is highly probable that the classification of linear and 
round CMCs is possible and will yield similar results as the classification of linear 
and pleomorphic CMCs. 
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Table 1.  Accuracy in three binary classifications among sets of SMCs, SVM classifier with RBF kernel,
            that indicates that sets of SMCs are not linearly separable and penalty parameter C = 1. For all
            classification tasks training and test sets contained 60 SMCs

Classification 
Task 

Features
Selection 
Method

The Most Discriminate
Features

Feature
Weight

Classification 
Accuracy 

%

Linear–
Pleomorphic CorrCoef

Shape Moment  1 1.00

 98Shape Moment  3 0.98
Inner Compactness 0.92

Major  Axis 0.91

Round –
Pleomorphic Simba

Ellipticity    1.00

 94Bin. Invariant Moment 3 0.87
Bin. Invariant Moment 1 0.47

Area 0.39

Round –
Pleomorphic LogRatio

Ellipticity 1.00

 94Efective Radius  3 0.83
Bin. Invariant Moment 1 0.82
Bin. Invariant Moment 3 0.81

Linear  -
Round CorrCoef 

Shape Moment 1 1.00

100Shape Moment 3 0.92
Major  Axis 0.91

 Inner Compactness 0.90

Linear  -
Round Simba

Shape Moment  3 1.00

100Shape Moment  1 0.92
Efective Radius  3 0.75

Major  Axis 0.51

Table 2. Classification accuracy for pleomorphic and linear CMCs, γ – parametr of the kernel function,
    ν – parameter of the error function. Training and test samples contain 45 and 44 clusters res-
   pectively. Two of the most discriminate features – compactness and major axis – are
   the same as for differentiation of pleomorphic SMCs from linear SMCs 

Kernel function ;
Model  parameters;
Selection method

The most discriminate features
Classification accuracy (%)

for samples
training test all

Sigmoid;
γ = 0.3, ν = 0.5 ;

CorrCoef

Binary Invariant Moment 1

86.7 88.6 87.6Major Axis

Compactness Inner 

RBF;
γ = 0.3, ν = 0.5

CorrCoef

Binary Invariant Moment 1 

84.4 86.4 85.4Major Axis

Compactness Inner 
Sigmoid;

γ = 0.5, ν = 0.5;
GFlip

Binary Invariant Moment 1
82.2 86.4 84.3

Roughness = ShM3-ShM1
RBF;

γ = 0.5, ν = 0.5;
GFlip

Binary Invariant Moment 1
82.2 84.1 83.1

Roughness = ShM3-ShM1
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 In Figure 2 the scatter-plots of the most discriminative features for the clas-
sification of linear and pleomorphic MCs are presented. In the case of classification 
of single MCs’ sets with regular shapes, shape moments play the role of the most 

Fig. 2. The scatter-plots of the most discriminative features for the classification of MCs as linear and 
pleomorphic – on the left for SMCs, on the right for CMCs. On X-axis – object number, on Y-axis 
– normalized, unit-less feature values. Short-cuts used in the legend: SLM – single linear microcal-
cifications, SPM – single pleomorphic microcalcifications, compact. – compactness, ShM1 – Shape

 Moment 1, ShM3 – Shape Moment 3, B In Mom1 – binary invariant moment 1
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important features complemented with inner compactness and major axis. In the clas-
sification of clustered  linear and pleomorphic MCs, the most discriminative features 
are compactness and major axis, and the shape moments are replaced with the first 
invariant shape moment, more robust, invariant to scale, rotation and translation 
shape descriptor.  
 With the transition from single microcalcifications to clustered  shape moments 
are replaced with more robust, invariant to translation rotation and scale descriptor,  
binary invariant moment 1,  and the descriptor measuring average shape irregularity in 
ShM3-ShM1 cluster is added ( see four bottom panels). Compactness and major axis, 
two descriptors reflecting the salient differences in microcalcifications’ morphology 
remains among most important discriminative features ( see four upper panels) for 
both SMCs and CMCs.  

4. Conclusions

In the paper, the preliminary results for the classification of MCs into the three 
BIRADS™ morphologic categories (punctate, pleomorphic and linear) have been 
presented. The research can be divided into two stages. The first consisted of three 
binary classifications of single MCs’ sets using most discriminative features se-
lected from the initial feature set. Achieved high classification accuracy – 100% for 
classifying of SMCs as linear or round, 98% for classifying of SMCs as linear or 
pleomorphic and 94% for classifying of SMCs as pleomorphic or round – has been 
the proof that the proposed feature set is able to carry sufficient information to 
discriminate among different types of the MCs morphology. 
 During the second stage the differentiation of the clustered MCs into linear or 
pleomorphic morphologic types was performed. Obtained accuracy ranges from 84 
to 88 %. The cluster morphology is described as mean values of single MCs shape 
descriptors. This simplified approach limits the area of application to the clusters 
with sufficient number of MCs with typical shapes. The data sets in both experiments 
are not linearly separable.
 The results of the classification of clustered linear and pleomorphic CMCs show 
that it is possible to differentiate them into the BI-RADSTM categories with three 
simple and computationally efficient descriptors, inner compactness,  major axis 
and first invariant moment calculated from binary image with the accuracy ranging 
from 86 to 88 %. 
 The presented results should be also confirmed on MCs from benign clusters 
and future research should extent the lesion feature set to others (i.e. textures, 
edges) in order to complete diagnostic rules of classification. Moreover, these 
results should be complemented with similarity metrics to be useful in the CBIR 
application. 
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