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Feature selection problem appears where large number of features constraint effective data 
analysis and processing. Identification of the most important feature subsets is a crucial 
challenge in many important applications. For example, a basic question in bioinformatics 
which is identification of genes functionalities, can be formulated and answered as a problem 
of this kind. Identification of the most important feature subsets through minimisation of 
convex and piecewise-linear (CPL) criterion function is described and analysed in the paper. 
This approach is combined with relaxation of the linear separability assumption.
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1. Introduction

Feature selection is one of the fundamental problems in pattern recognition [1]. Fea-
ture selection methods are used for removing irrelevant or redundant features. The 
importance of feature selection methods becomes apparent in the context of rapidly 
growing amount of collected data in contemporary databases [2]. 
 It is assumed in the paper that objects collected in a given database are repre-
sented in a standard form as feature vectors of the same dimensionality and type, 
and are used for the purpose of decision support [3]. Components of each feature 
vector are numerical results of particular examinations of a given object. It is also 
assumed that objects stored in a database have been divided in accordance with 
expert opinion into disjoined categories (the supervised case). Basing on expert’s 
decisions, the family of feature vectors has been divided into the disjoined learning 
sets. Each learning set contains the referential feature vectors describing objects 
of the same category. For example, particular learning sets may contain feature 
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vectors describing patients with the same disease and can be used in the system of 
diagnosis support. 
 Decision support systems work in accordance with their decision rules. Such 
decision rules can be designed on the basis of learning sets by means of various 
methods. Evaluation and comparison of different decision rules is an important part 
of the designing process. In particular, statistical evaluation of different decision 
rules is demanded before their application in practice. A low number of objects in 
comparison to a large number of features is a serious obstacle in statistical evaluation 
of decision rules. Such problem appears usually in exploration of genomic data where 
the number of features can be greater thousand times than the number of objects [4]. 
Feature selection procedures are applied to data sets in order to decrease the number 
of features used during the decision stage.
 Here we are considering such approach to the feature selection problem which 
refers to the concept of linear separability of the learning sets. The relaxation of linear 
separability combined with the feature selection is discussed in the paper. The term 
“relaxation” means here deterioration of the linear separability as a result of succes-
sive omitting of selected features. The considered approach to the feature selection 
is based on minimisation of the convex and piecewise-linear (CPL) criterion func-
tions. The perceptron criterion function originated from the theory of neural network 
belongs to the considered CPL family [5].

2. Linear Separability of Two Learning Sets 

Let us assume that m objects Oj contained in a given database has been represented as 
feature vectors xj[n] = [xj1,..., xjn]T or as points in the n-dimensional feature space F [n] 
(  j = 1,…, m). The component xji of the vector xj[n] is the numerical value of the i-th 
feature xi of the object Oj. For example, in the case of clinical database, the components 
xji can be the numerical results of diagnostic examinations of a given patient Oj.
 Let us consider two learning sets G+ and G– of n-dimensional feature vectors xj[n]. 
The positive set G+ contains m+ feature vectors xj[n] and the negative set G– contains 
m– vectors xj[n]:

   G+ = {xj[n]: j ∈ J +}  and  G– = {xj[n]: j ∈ J –} (1)

where J + and J – are disjoined sets (J + ∩ J – = ∅) of indices j. 
 In practice, the positive set G+ contains vectors xj[n] of only one category. For 
example, the set G+ may contain the feature vectors xj[n] representing patients with 
cancer and the set G– may represent patients without cancer.
DEFINITION 1: The sets G+ and G– (1) are linearly separable, if and only if there  exists 
such a weight vector w[n] (w[n]∈Rn) and threshold θ (θ ∈ R), that all the below 
inequalities are fulfilled:
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   (∃ w[n], θ )  (∀xj[n] ∈G+)    w[n]Txj[n]  > θ,    (2)
   and   (∀xj[n] ∈G–)    w[n]Txj[n] < θ.

The parameters w[n] and θ define the separating hyperplane H(w[n],θ) in the feature 
space F[n] (x[n] ∈F[n]):  

   H(w[n],θ) = {x[n]: w[n]Tx[n] = θ} (3)

If the relations (2) are fulfilled, then all the elements xj[n] of the set G+ are situated 
on the positive side of the hyperplane H(w[n],θ) (3) and all the elements of the set 
G– are situated on the negative side of this hyperplane.
REMARK 1: If m feature vectors xj[n] are linearly independent, then the arbitrary sets 
G+ and G– (1) of these vectors are linearly separable [6].
REMARK 2: If the sets G+ and G– (1) are linearly separable (2) in the feature space 
F[n], then these sets are also linearly separable in any greater feature space F′[n′],  
where F [n] ⊂ F ′[n′].
 In accordance with the Remark 2, for any constant c the sets G+ = {xj[n]: xji′ > c} 
and G–  ={xj[n]: xji′ < c} are linearly separable in each feature space F[n].
 It can be seen that linear separability (2) can be formulated equivalently to (2) 
as [7]:

   (∃ v[n + 1])  (∀ yj[n + 1] ∈G+) v[n + 1]Tyj[n + 1]  ≥ 1,
     (4)
        and    (∀ yj[n + 1] ∈ G–) v[n + 1]Tyj[n + 1] ≤ –1.

where yj[n + 1] are the augmented feature vectors, and v[n + 1] is the augmented 
weight vector:

   (∀j ∈{1,…,m}) yj[n + 1] = [1, xj[n]T] T

     (5)
             and                   v[n + 1] = [–θ, w[n]T]T

The inequalities (4) will be directly used in the definition of the convex and piece-
wise-linear (CPL) penalty functions ϕj

+ (v[n + 1]) and ϕj
– (v[n + 1]).

3. Convex and Piecewise Linear (CPL) Criterion Functions 

Let us introduce the convex and piecewise-linear penalty functions ϕj
+ (v[n + 1]) and 

ϕj
– (v[n + 1]) [7]

(∀yj[n + 1] ∈G+)
  1 – v[n + 1]Tyj[n + 1] if v[n + 1]Tyj[n + 1] < 1
ϕj

+ (v[n + 1]) =    (6)
                0 if  v[n + 1]Tyj[n + 1] ≥ 1
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and
(∀yj[n + 1] ∈ G–)
  1 + v[n + 1]Tyj[n + 1] if v[n + 1]Tyj[n + 1] > –1
ϕj

– (v[n + 1])  =    (7)
                0 if  v[n + 1]Tyj[n + 1] ≤ –1

The function ϕj
+ (v[n + 1]) is equal to zero if and only if the vector yj[n + 1]

(yj[n + 1] ∈G + ) is situated on the positive side of the hyperplane H(v[n + 1]) (3) and 
is not too near to it. Similarly, ϕj

– (v[n + 1]) is equal to zero if the vector yj[n + 1] 
(yj[n + 1] ∈ G – ) is situated on the negative side of the hyperplane H(v[n + 1]) and is 
not too near to it.
 The perceptron criterion function Φ(v[n + 1]) can be defined on the sets G + and 
G – (1) as [6]:

   Φ( ]) ( ]) ( ])v v[ v[ [n n nj j
j J

j j
j J

+ = + + ++

∈

+

∈+ −
∑ ∑1 1 1α ϕ α ϕ  (8)

where nonnegative parameters αj determine prices of the particular feature vectors 
xj[n]. 
 We are interested in finding the minimum Φ(vk

*[n + 1]) of the criterion function 
Φ(v[n + 1]):

   (∀v[n + 1])   Φ(v[n + 1]) ≥  Φ(vk
*[n + 1]) = Φ*. (9)

It has been proved that the value Φ* is equal to zero (Φ* = 0) if and only if the sets 
G + and G – (1) are linearly separable (4) [6].

   (Φ* = 0) ⇔ (G + and G – are linearly separable (4)). (10)

A modified CPL criterion function Φλ(v[n + 1]) which includes additional penalty 
functions φi(v[n + 1]) and the costs γi (γi  > 0) related to particular features xi has been 
introduced [6]:

   (∀i  ∈{1,…,n})  φi(v[n + 1]) = |wi| = | ei[n + 1]Tv[n + 1] | (11)

and 

   Ψ Φλ λ γ( ]) ( ]) ( ])v v v[ [ [n n ni i
i I

+ = + + +
∈
∑1 1 1Φ  (12)

where λ (λ ≥ 0) is the cost level, and I = {1,…,n}.
 Let us relate the hyperplane hj

+[n + 1] in the parameter space R n+1 to each aug-
mented feature vector yj[n + 1] (5) from the set G + (1), and the hyperplane hj

–[n + 1] 
to each element yj[n + 1] (5) of the set G –.
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   (∀j ∈ J +)   hj
+[n + 1] = {v[n + 1]:  yj[n + 1]Tv[n + 1] = 1}, and (13)

   (∀j ∈ J –)   hj
–[n + 1]  = {v[n + 1]:  yj[n + 1]Tv[n + 1]  = –1}.

The first n unit vectors ei[n + 1] = [0,...,0,1,0,...,0]T (i = 1,...,n) without the vector                
en + 1[n + 1] = [0,…,0,1]T are used in defining the hyperplanes hi

0[n + 1] in the aug-
mented parameter space Rn+1 (5):

   (∀i ∈ {1,…,n}) (14)
   hi

0[n + 1]  = {v[n + 1]: ei[n + 1]Tv = 0}= {v[n + 1]: vi = 0}.

The hyperplanes hj
+[n + 1], hj

–[n + 1] and hi
0[n + 1] divide the parameter space R n+1 (5) 

in the disjoined regions Rl[n + 1]. Each region Rl[n + 1] is a convex polyhedron in 
the parameter space with number of vertices vk[n + 1]. The CPL criterion function 
Ψλ(v[n + 1]) (12) is linear inside each region Rl[n + 1]. It has been proved that the 
minimum of the criterion function Ψλ(v[n + 1]) (13) can be found in one of vertices 
vk[n + 1] of some region Rl[n + 1]. Each vertex vk[n + 1] in the parameter space R n+1 
is the intersection point of at least (n + 1) hyperplanes hj

+[n + 1], hj
–[n + 1] or hi

0[n + 1]. 
The below equations should be fulfilled in the vertex vk[n + 1]: 

   (∀j ∈ Jk
+) yj[n + 1]Tvk[n + 1] = 1, and 

   (∀j ∈ Jk
–) yj[n + 1]Tvk[n + 1] = –1, and (15)

   (∀i ∈ Ik
0) ei[n + 1]Tvk[n + 1] = 0 . 

The above equations can be given in the matrix form:

   Bk[n + 1] vk[n + 1] = δ′[n + 1] (16)

where Bk [n + 1] is a non-singular matrix (basis) with the rows constituted by the 
linearly independent vectors yj[n + 1] (j ∈ Jk

+ ∪ Jk
–) or the unit vectors ei[n + 1] (i ∈ Ik

0), 
and δ′[n + 1] is the margin vector with components equal to 1, –1 or 0 according to 
(15).  

REMARK 3: The number n1 of the independent vectors yj[n + 1] in the matrix Bk[n + 1] 
(16) cannot be greater than the rank r of the data set G + ∪ G – (1). Therefore, the 
number n0 of the unit vectors ei[n + 1] (i ∈ Ik

0) (15) in the matrix Bk[n + 1] is not less 
than n – r (n0 ≥ n – r ).

The vertex vk[n + 1] (16) can be computed as follows: 

   vk[n + 1] = Bk[n + 1]–1 δ′[n + 1]. (17)

 The criterion function Ψλ(v[n + 1]) (12), similarly to the function Φ(v[n + 1]) (9) 
is convex and piecewise-linear (CPL). The minimum of this function is situated in 
one of the vertices vk[n + 1] (16):



48 L. Bobrowski, T. Łukaszuk

   (∀v[n + 1])   Ψλ(v[n + 1]) ≥ Ψλ(vk
^[n + 1]) = Ψλ

^. (18)

 The basis exchange algorithms allow to find efficiently the parameters (vertex) 
vk

^[n + 1] constituting the minimum of the CPL function, even in the case of large 
data sets G + and G – (1) [8].
 The components wki of the vertex vk[n + 1] which are related to the unit vectors 
ei[n + 1] (i ∈ Ik

0) in the basis Bk[n + 1] (16) are equal to zero (wki = 0) (15). The n0 
features xi (i ∈ Ik

0) (15) with the weights wi equal to zero in the vertex vk
^[n + 1] (18) 

can be reduced without changing the separating hyperplane H(wk
^[n + 1],θk

^) (4):

   (∀i ∈ Ik
0)     (19)

   ei[n + 1]Tvk
^[n + 1] = 0  ⇒ wi = 0 ⇒ the feature xi can be reduced. 

As a result, the vertex vk
^[n + 1] (18) can be fully characterized by the subset of n – n0 

features xi (i ∉ Ik
0). The vertex vk

^[n + 1] (15) is characterized by the optimal subset 
of such n – n0 features xi which are not related to the unit vectors ei[n + 1] (i ∉ Ik

0) in 
the basis Bk

^[n + 1] (16) related to the optimal vertex vk
^[n + 1] (18). As a result, the 

optimal feature subset Fk
^[n – n0] can be identified in this approach by minimization 

(18) of the criterion function Ψλ(v[n + 1]) (12). One of procedures of feature subset 
selection can be based on this scheme. 

REMARK 4: A sufficiently large increase of the cost level λ (λ ≥ 0) in the criterion func-
tion Ψλ(v[n + 1]) (12) results in the increase of the number n0 of unit vectors ei[n + 1] 
in the optimal base Bk

^[n + 1] linked to the vertex vk
^[n + 1] (18) [7].

 Therefore, the dimensionality of the optimized feature subset Fk
^[n – n0] can 

be reduced arbitrarily with the increase of the parameter λ in the criterion func-
tion Ψλ(v[n + 1]) (12). For example, the value λ =  0 means that the optimal the 
vertex vk

^[n + 1] (18) constitutes the minimum of the perceptron criterion function 
Φ(v[n + 1]) (8) defined in the full feature space F[n]. On the other hand, sufficiently 
large value of the parameter λ results in the optimal vertex vk

^[n + 1] (18) equal to 
zero (vk

^[n + 1] = 0). Such solution is not constructive, because it means that all the 
features xi have been reduced (18) and the separating hyperplane H(w[n],θ) (3) can-
not be defined. 

4. Selection of Optimal Feature Subset Based on Linear
    Separability 

Let us consider the case of “long vectors”, where the dimensionality n of the feature  
vectors xj[n] is much greater than the number m (n >> m) of these vectors (j = 1,..,m). 
We can expect in such case that the vectors xj[n] are linearly independent [7]. In ac-
cordance with the Remark 1, the arbitrary data sets G + and G – of linearly independent 
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vectors xj[n] are linearly separable (6). The minimal value Ψ* (9) of the criterion 
function Ψ(v[n + 1]) (8) defined on linearly separable sets G + and G – (4) is equal 
to zero (Ψ* = 0). The minimum of the function Ψ(v[n + 1]) (8) can be situated in the 
optimal vertex vk

*[n + 1] (9), where the below equations hold (15): 

   (∀j ∈ Jk
+)     vk

*[n′]Tyj′[n′] = 1,     (20)
    and  (∀j ∈ Jk

–)      vk
*[n′]Tyj′[n′] = –1 

where n′ = n – n0 is the dimensionality of the reduce feature vectors yj′[n′] obtained 
from yj[n + 1] after neglecting n0 features xi related to the set Ik

0 (15) and vk
*[n′] is the 

reduced vertex obtained from vk
*[n + 1] (9). 

 The vectors yj′[n′] belong to the reduced feature subspace Fk[n′] (yj′[n′] ∈ Fk[n′]). 
We can remark that if the sets G+ and G– are linearly separable (4) in a given feature 
subspace Fk[n′] there can be more than one vertex vk

*[n′] constituting the minimum 
(9) of the function Φ(v) (8), which separates of these sets:

   (∀yj[n + 1] ∈G +)    vk
*[n′]Tyj′[n′] ≥ 1     (21)

   and  (∀yj[n + 1] ∈G–)   vk
*[n′]T yj′[n′] ≤ –1. 

Moreover, in the case of “long vectors” there may exist many such feature subspaces 
Fk[n′] of a given feature space F[n] (Fk[n′] ⊂ F[n]) which can assure the linear separa-
bility (21). Therefore, a question arises which of the vertices vk

*[n′] (20) constituting 
the minimum (9) of the perceptron function Φ(v[n + 1]) (8) is the best one. The answer 
for a such question can be given on the basis of minimization of the modified criterion 
function Ψλ(v[n + 1]) (13). Such vertex vk

^[n + 1] (16) which constitutes minimum 
(18) of the function Ψλ(v[n + 1]) (13) can be treated as the optimal one.
 It can be proved that if the sets G+ and G– (1) are not linearly separable (21), then 
the modified criterion function Ψλ(v[n + 1]) (13) with a sufficiently small cost level λ 
(λ ≥ 0), has the minimal value (18) in the same vertex vk

*[n + 1] (9) as the perceptron 
criterion function Φ(v[n + 1]) (8) [5]:

   (∃ λmax)  (∀λ∈ (0, λmax))  (∀v[n + 1])  Ψλ(v[n + 1]) ≥ Ψλ(vk
*[n + 1]). (22)

The value of the modified criterion function Ψλ(v[n + 1]) (13) in such points v[n + 1] 
which separate linearly (21) the sets G + and G – (1) can be expressed in the below 
manner (12):

   Ψλ λ γ φ λ γ′( ]) ( ]) .v v[ [n nI i
i I

i ki
i I

+ = + =
∈ ∈
∑ ∑1 1 v  (23)

Therefore, the minimization of the criterion function Ψλ(v[n + 1]) (13) can be replaced 
by the minimization of the function Ψλ′(v[n + 1]) (23) under the constraint that the 
point v[n + 1] linearly separates the sets G + and G – (1).
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REMARK 5: If the sets G + and G – (1) are linearly separable, then the vertex vk
*[n + 1] 

constituting the minimum (22) of the modified criterion function Ψλ(v[n + 1]) (12) 
with equal feature costs γi has the lowest L1 norm ||vk

*[n + 1]||L1 = Σi |vki| among all 
such vectors v[n + 1] which linearly separate (21) these sets.

The Remark 5 points out a possible similarity between the CPL solution vk
*[n + 1]  

(22) and the optimal vector v*[n + 1] obtained in the Support Vector Machines (SVM) 
approach [9]. But CPL approach also allows to obtain different types of solution 
vk

*[n + 1] (22) by another specification of feature costs γi and the cost level λ param-
eters (12).  
 The feature selection procedure can be based on the minimization of the percep-
tron criterion function Φ(v[n + 1]) (8) or of the modified criterion function Ψλ(v[n + 1]) 
(12). In this approach, the minimal values Φ(vk

*[n + 1]) (9) or Ψλ(vk
*[n + 1]) (22) of the 

criterion functions are used in the evaluation process of different feature subspaces 
Fi[k] (Fi[k] ⊂ F[n]). The modified criterion function Ψλ(v[n + 1]) (12) gives additional 
possibility to introduce feature costs γi (γi > 0) related to particular features xi. As 
a result, the outcome of feature subset selection process can be influenced by the 
feature costs γi (12). The feature subset selection process considered in this paragraph 
assumed linear separability of the learning sets G +and G – (21). Below are presented 
considerations of feature selection with some relaxation of the linear separability 
assumption. 

5. Feature Selection with the Linear Separability Relaxation 

Different feature subsets {xi(1),…, xi(k)} or different feature subspaces Fi[k] (Fi[k] ⊂ F[n])
 can by evaluated by the minimal values of the CPL criterion function Φ(v[n + 1]) (8) 
or the modified criterion function Ψλ(v[n + 1]) (12). The minimal values Φ(vl

*[n + 1]) 
(9) or Ψλ(vl

^[n + 1]) (18) can be used as a measure of linear separability of the 
learning sets G +and G – (21) in the [7]. In order to compare the different feature 
subspaces Fi[k] in this way, the criterion functions should be defined separately 
for each subspace. 
 Let the symbol Φi(v[k + 1]) means the perceptron criterion function (8) defined 
on the augmented vectors yj[k + 1] (5), where k-dimensional feature vectors xj[k] 
belong to the feature subspace Fi[k] (xj[k] ∈Fi[k]). It means that the penalty func-
tions ϕj

+(v[k + 1]) (6) and ϕj
–(v[k + 1]) (7) are also defined on the augmented vectors 

yj[k + 1] (5). In this case, the minimal values Φ(vl
*[k + 1]) (9) or Ψλ(vl

^[k + 1]) (18) 
can be used as the measure of linear separability of the learning sets Gi

+[k] and Gi
–[k] 

(21) in the feature subspace Fi[k] [7].
 It can be proved that the criterion function Φ(v[k + 1]) (8) has the monotonocity 
property [7]:
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   Fi′ [k′] ⊂ Fi[k] ⇒ (Φi′
* ≥ Φi

*) (24)

where Φi
* is the minimal value (9) of the criterion function Φi(v[k + 1]) (8) defined 

in the feature subspace Fi[k], and Φi′
* is the minimal value of this criterion function 

defined in the feature subspace Fi′ [k ′].
Similar monotonocity property occurs for the modified criterion function Ψλ(v[k + 1]) 
(12):

   Fi′ [k ′] ⊂ Fi[k] ⇒ (Ψi′
* ≥ Ψi

*) (25)

where Ψi
* is the minimal value (18) of the criterion function Ψλ(v[k + 1]) (12) defined 

in the feature subspace Fi[k].
 Let us call the minimal value Φi

* (24) of the criterion function Φ(v[k + 1]) (8) 
the measures of linear inseparability of the learning sets Gi

+[k] and Gi
–[k] (21) in 

the feature subspace Fi[k] [7]. In accordance with the above relations, neglecting 
of some features xi from the subspace F[n] cannot decrease the measures of linear 
inseparability Φk

* (24). Neglecting of sufficiently large number of features xi results in 
increasing of the values Φk

* (24). In other words, the condition of linear separability 
can be relaxed in this way. The feature selection problem can be formulated on the 
basis of the measure Φi

* (24) in the below manner [7]:
 Feature selection problem: Neglect maximal number of features xi from the 
subspace F[n] under the condition that an increase of the measure of linear insepa-
rability Φ* (24) is smaller than the given a priori margin γ0 (γ0 ≥ 0): 

   Φi′
* – Φi

* ≤ γ0 (26)

where Φi
* is the minimal value (18) of the criterion function Φ(v[n + 1]) (8) defined 

in the feature space F[n], and Φi′
* is the minimal value (9) of the criterion function 

Φ(v[k + 1]) (8) defined in optimal feature subspace Fi
*[k ′], composed of minimal 

number k ′ of features xi.
 The condition (26) reflects the concept of the relax linear separability because 
allows to worsening of the linear separability (21) in a some limit γ0. The sets Gi

+[n] 
and Gi

–[n] which can be linearly separable (21) in the initial feature space F[n] 
are not linearly separable in the reduced feature subspace Fi

*[k ′]. The solution of 
the feature selection problem (26) allows to identify the optimal feature subspace 
Fi

*[k ′], and the optimal feature subset Si
*[k ′] = {xi(1),…, xi(k′)}. The solution of this 

problem can be reached through minimization of the criterion function Ψλ(v[n + 1]) 
(12) combined  with an increasing of the cost level λ (λ ≥ 0). In accordance with the 
Remark 4, it is possible to increase arbitrarily the number n0 of the reduced features 
xi by an increase of the parameter λ. Moreover, the less important features xi can be 
reduced in this way.
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6. Feature Selection in the Context of Linear Classification 

The optimal vertex vk
*[n + 1] = [– θk

*,wk
*[n]T]T (5) which constitutes the minimum (9) 

of the perceptron criterion function Φ(v[n + 1]) (8) can be used also in definition of 
the linear classifier with the below decision rule concerning the allocation of the 
feature vector x[n] to one of the category ω1 or ω0:

   if   wk
*[n]Tx[n] ≥ θk

*,   then x[n] is allocated to the category ω1     (27)
   if   wk

*[n]Tx[n] < θk
*,   then x[n] is allocated to the category ω0  

where the category (class) ω1 is represented by elements xj[n] of the learning set G + 
and the category ω0 is represented by elements of the set G –.
 It has been proved that, if the sets G + and G – (1) are linearly separable (4), then 
the above rule allocates correctly all elements xj[n] of these learning sets [1]. It means 
that (21): 

   (∀xj[n] ∈G +)    wk
*[n]Txj[n] > θk

*,    and     (28)
   (∀ xj[n] ∈G –)   wk

*[n]Txj[n] < θk
*  

If the sets G + and G – (1) are not linearly separable (4), then not all but only a majority 
of the vectors xj[n] fulfil the above inequalities.
 The quality of the linear classifier (27) can be evaluated by using the error es-
timator (error rate) e(wk

*[n],θk
*) as the fraction of wrongly classified elements xj[n] 

of the sets G + and G – (1):

   e(wk
*[n],θk

*) = me (wk
*[n],θk

*) / m (29)

where m is the number of all elements xj[n] of the sets G + and G – (1), and  me(wk
*[n],θk

*) 
is the number of elements xj[n] wrongly allocated by the rule (27).
 The parameters wk

*[n] and θk
* of the linear classifier (27) are estimated from 

data sets G + and G – (1) through minimization of the perceptron criterion function 
Ψ(v[n + 1]) (8) determined on elements xj[n] of these sets. It is known that if the same 
data xj[n] is used for classifier designing and classifier evaluation, then the evaluation 
results are too optimistic (biased). The error rate (29) evaluated on the elements xj[n] 
of the learning sets is called the apparent error. For example, if the sets G + and G – (1) 
are linearly separable (4), then the relation (28) holds and, as a result, the apparent 
error (29) evaluated on elements xj[n] (1) is equal to zero (e(wk

*[n],θk
*) = 0). But it is 

observed in practice that the error rate of the classifier (27) evaluated on new vectors 
x[n] is often greater than zero.
 For the purpose of the classifier’s bias reducing, the cross validation procedures 
are applied [3]. The term p-fold cross validation means that data sets G + and G – (1) 
have been divided into p parts Gi, where i = 1,…, p (for example p = 10). The vec-
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tors xj[n] contained in p – 1 parts Gi are used for definition of the criterion function 
Ψ(v[n + 1]) (8) and computing of the parameters wk

*[n] and θk
*. The remaining vectors 

xj[n] are used as the test set (one part Gi′) for computing (evaluation) the error rate 
e(wk

*[n],θk
*). Such evaluation is repeated p times, and each time different part Gi′ is 

used as the test set. The cross validation procedure allows to use different vectors xj[n] 
(1) for the classifier (27) designing and evaluation (29) and as a result, to reduce the 
bias of the error rate estimation (29). The error rate (29) estimated during the cross 
validation procedure will be called the cross-validation error.
 Another type of the classifier (27) evaluation is based on the so-called confusion 
matrix T(wk

*[n],θk
*):

             ┌m11   m10
┐

            T(wk
*[n],θk

*) =   (30)
             └m01   m00┘
where m11 is the number of elements xj[n] of the set G+ (1) correctly allocated (27) 
in the category ω1, and m10 is the number of elements in this set wrongly allocated 
in the category ω0. Similarly, m00 is the number of elements xj[n] of the set G– (1) 
correctly allocated (27) in the category ω0, and m01 is the number of elements in this 
set wrongly allocated in the category ω1. 
 The confusion matrix T(wk

*[n],θk
*) allows to estimate different types of errors 

related to the classifier (27). The cross validation procedures can be also used for 
estimating such types of errors.
 Both the error rate ei(wk

*[k],θk
*) (29) as well as the confusion matrix Ti (wk

*[n],θk
*) 

(30) can be estimated in different feature subspaces Fi[k] (Fi[k] ⊂ F[n]). Different 
feature subspaces Fi[k] can be evaluated and compared on this basis. In general, 
the best feature subspaces Fi[k] should be characterised by the lowest error rate 
ei(wk

*[k],θk
*) (29) and a near diagonal confusion matrix Ti (wk

*[n],θk
*) (30). Feature 

selection procedures can be organised in accordance with this demand.  

7. Examples of Experimental Results 

Arrhythmia data set and Colon data set was chosen for experimentation with described 
earlier feature selection procedures.
 Arrhythmia data set was taken from the UCI Machine Learning Repository 
(http://www.ics.uci.edu/~mlearn/MLRepository.html) [10]. This data set describes 
patients with presence or absence of cardiac arrhythmia. The explored data set 
contained 420 patient’s records described by 258 features. The features reflected 
the patient physical form (e.g. age, sex, weight, height) as well as the parameters of 
EEG signals. The records have been divided into two approximately equal groups 
(1): G + – cardiac arrhythmia and G – – normal EEG.
 Colon data set has been reported by Alon et al. [11]. This data set contains 
descriptions of 22 normal and 40 colon cancer samples. Each sample contains 2000 
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gene expression values. The gene expression values have been log transformed, and 
then normalized. This data set is available at http://www.iitk.ac.in/kangal/bioinfo.
shtml and its description at http://microarray.princeton.edu/oncology.
 During the first stage of the experiment the dimensionality of the feature vec-
tors xj[n] has been reduced while preserving the linear separability (21) of the data 
sets G + [n] and G – [n] (1). The minimization (18) of the modified criterion function 
Ψλ(v[n + 1]) (12) combined with feature reduction (19) has been used for this purpose. 
In a result, the dimensionality of the Arrhythmia data set has been reduced from 
n = 258 to n′ = 163. The dimensionality of the Colon data set has been reduced from 
n = 2000 to n′ = 39. The most important feature subsets assuring linear separability 
have been also identified this way.
 During the second stage of the experiment the dimensionality n′ of the feature 
vectors xj[n′] has been reduced further while relaxing in some limits of the linear 
separability (21) of the data sets G + [n′] and G – [n′]. Neglecting of the additional fea-
tures xi at this stage resulted in worsening of the linear separability. The minimization 
(9) of the perceptron criterion function Φ(v[n′ + 1]) (8) combined with the optimized 
feature selection (26) has been used at this stage.
 The feature subspaces Fk[n′] obtained during the second stage have been ad-
ditionally evaluated by the estimated error rate e(wk

*[n′],θk
*) (29). The p-fold cross 

validation procedure with p = 5 has been applied for this purpose. This procedure 
has been applied for selected dimensionalities ni (ni < n′). The data sets G + [n′] and 
G – [n′] has been divided randomly into p folds. For each dimensionality ni, the data 
sets G + [n′] and G – [n′] has been divided into p folds K times (K =100). The repeated 

Fig. 1. Mean values and standard deviations of the cross validation error (CVE) e(wk
*[n′],θk

*) (29) and
the apparent error (AE) estimated for various dimensionalities n′
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divisions of the data sets G + [n′] and G – [n′] allowed for the evaluation both the 
mean value as well as the standard deviation (variance) of the estimated error rate 
e(wk

*[n′],θk
*) (29).

 The results of these computations are summarised in the below tables and 
 figures.

Table 1. Mean values and standard deviations of the cross validation error (CVE) e(wk
*[n′],θk

*) (29) and
 the apparent error (AE) for various dimensionalities n′ (Arrhythmia data set)

n′ AE (mean) AE (std dev) CVE (mean) CVE (std dev)

163 0 0 0.326567 0.0524481

150 1.79E-05 0.000229848 0.311954 0.0507423

120 0.00162306 0.0021981 0.280443 0.0518441

100 0.0124394 0.00911507 0.255526 0.0491135

 80 0.0595116 0.0132822 0.237787 0.046031

 70 0.0767527 0.0117279 0.221127 0.0507594

 65 0.0834023 0.0116217 0.221069 0.0462739

 60 0.0990721 0.0121999 0.230105 0.0452354

 55 0.112449 0.0118556 0.237612 0.044522

 50 0.125232 0.0123466 0.23675 0.0432401

 45 0.149776 0.0136048 0.245164 0.0437401

 40 0.172631 0.0131828 0.246641 0.0449471

 35 0.178375 0.0129352 0.244646 0.0433411

 30 0.189034 0.0130021 0.243791 0.0430754

 25 0.203502 0.0124633 0.247908 0.0425431

 20 0.215769 0.0133489 0.248619 0.0438193

 15 0.23499 0.0126528 0.25896 0.0434154

 10 0.252184 0.0133701 0.266102 0.0451637

Table 2. The confusion matrix T (wk
*[n′],θk

*) (30) evaluated by the cross  validation  for n′ = 163 
              and n′ = 65 (Arrhythmia data set)

n′ = 163 G1[n′] G0[n′]
ω1 168.71 68.29
ω0 68.92 114.08

n′ = 65 G1[n′] G0[n′]
ω1 190.58 46.42
ω0 46.47 135.53
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Table 3. Mean values and standard deviations of the cross validation error e(wk
*[n′],θk

*) (29) and the
   apparent error for various dimensionalities n′ (Colon data set)

n′ AE (mean) AE (std dev) CVE (mean) CVE (std dev)

39 0 0 0.0753366 0.072651

35 0 0 0.0760804 0.0689891

30 0 0 0.0677334 0.0663773

25 0 0 0.0777835 0.0719197

20 0 0 0.113534 0.0746782

15 0 0 0.0887336 0.0696158

10 0 0 0.125156 0.0891572

8 0.00329345 0.00776852 0.132832 0.0855875

7 0.0509652 0.0296641 0.130792 0.0908926

6 0.0763155 0.0325885 0.12595 0.0943788

5 0.0712929 0.0256584 0.103741 0.0839435

4 0.072621 0.0203354 0.0884397 0.0775479

3 0.104343 0.0203249 0.113357 0.0821719

2 0.164566 0.0232248 0.167032 0.0946489

Fig. 2. Mean values and standard deviations of the cross validation error e(wk
*[n′],θk

*) (29) and the
apparent error for various dimensionalities n′ (Colon data set)
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Table 4. The confusion matrix T(wk
*[n′],θk

*) (30) evaluated by the cross validation 
               for n′ = 39, n′ = 30, n′ = 4 (Colon data set)

n′ = 39 G1[n′] G0[n′]
ω1 35.35 4.65
ω0 0.040 21.96

n′ = 30 G1[n′] G0[n′]
ω1 35.845 4.155
ω0 0.05 21.95

n′ = 4 G1[n′] G0[n′]
ω1 35.52 4.345
ω0 1.004 20.96

8. Concluding Remarks 

The process of feature selection has been divided in the paper into two stages. The 
first stage is relevant for a situation when the learning sets G+[n] and G–[n] (1) are 
linearly separable (2) in the initial feature space F[n]. Such situation often occurs in 
the case of long vectors, when the dimensionality n is much greater than the number 
m of feature vectors xj[n] [2]. During the first stage number of features xi are neglected 
in such a manner that the linear separability (2) of the learning sets G + [n′] and G – [n′] 
(1) is preserved in the reduced feature subspace Fi[n′]  (Fi[n′] ⊂ F[n]).
 The feature selection procedure during the first stage can be carried out efficiently 
through the minimization of the modified CPL criterion function Ψλ(v[n + 1]) (12). 
This criterion function depends on the three nonnegative parameters: αj – prices of 
feature vectors, γi – feature costs, and λ – cost level. Properties of the resulting feature 
subspace Fi[n′] depend on the choice of values of these parameters. For example, the 
costly features xi should have a sufficiently large values of the parameter γi. As a result 
of the parameter γi increasing a chance for the feature xi neglecting also increases.
 The presented second stage of feature selection is based on relaxation of the 
linear separability (2) of the learning sets G1

– [n′] and G0
+ [n′] (1). Neglecting succes-

sive features xi during this stage deteriorates linear separability (2). As a result, the 
minimal value Φ(vk

*[n′ + 1]) (9) of the perceptron criterion function Φ(v[n′ + 1]) (8) 
increases successively (Φ(vk

*[n′ + 1]) >0). Departure from linear separability can be 
controlled by the margin γ0 in the condition (26). At this stage, the feature selection 
procedure is aimed at reducing the maximal number of features xi while the increase 
of the value Φ(vk

*[n′ + 1]) (9) should be no greater than the margin γ0. It was assumed 
here that the remaining features xi constitute the feature subset {xi(1),…, xi(n′)} with the 
greatest discriminative power. Such assumption has been supported by experimental 
results obtained on two data sets.
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