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Cluster analysis or classification usually concerns a set of exploratory multivariate data 
analysis methods and techniques for finding a clustering structure on a dataset. That may 
refer either to groups of statistical data units or to groups of variables. In this work we deal 
with a generalization of this paradigm concerning clustering of complex data described 
by three different types of variables, frequently present in a three-way context. We obtain 
compatible versions of the same affinity coefficient for measuring similarity between 
statistical data units described by those three types of variables. A global generalized 
similarity coefficient is analyzed for such kind of mixed data, often arising in data mining 
or knowledge mining.

K e y w o r d s: cluster analysis, different type variables, similarity coefficient, three-way 
data

1. Introduction

Cluster analysis or classification usually concerns a set of exploratory multivariate 
data analysis methods and techniques for finding a cluster structure on a dataset. This 
may refer to grouping either statistical data units or variables. Traditional clustering 
methods usually work with a set of subjects as statistical data units described by a set 
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of homogeneous (that is, of the same type) variables. In previous work [1, 2, 3] we 
have extended this situation to the case where data units represent some kind of data 
sets (data units of second order or more) and variables may be of different types. In fact 
we may refer to three steps of generalization of the traditional paradigm that appear to 
be particularly useful (but not only) when large data bases are used, for instance in a 
data mining extended context: 1 – classification/clustering of complex or “three-way” 
data instead of the most common “two-way” data approach; 2 – clustering models 
where prior knowledge of data structure allows to some probabilistic framework 
as a tool of extracting (new) knowledge from clustering structures; 3 – comparison 
and clustering of hierarchical clustering models, based on the affinity of associated 
parameter profiles, inside an adaptive family of aggregation criteria. 
 The first two steps allow us to mine knowledge from large data bases, by building 
clustering models to explain data structure. The third one allows us to go into knowledge 
extraction from the models (somehow extending data mining to knowledge mining).
 The present work has mainly to do with the above first two steps of generaliza-
tion, when clustering of three-way data units described by heterogeneous variables 
is concerned. In fact, in large data bases, we are very often confronted with (large) 
matrices where data units are described by a heterogeneous set of variables. Therefore 
the question arises of how we should measure the similarity between statistical data 
units in a coherent way, if different types of variables are involved. Traditionally 
partial similarity coefficients for each type of variables are computed, and then a 
convex linear combination of those similarities gives a global similarity between data 
units. Such procedure must be performed in a consistent way, combining comparable 
similarity coefficients in a valid global similarity. In two-way data matrices a well 
known coefficient for comparing subjects described by different types of variables 
was proposed in 1971 by Gower.  
 So far we have been using the affinity coefficient for that purpose, either in two-
way or in three-way data cases. Here we generalize that procedure to cases where three 
types of heterogeneous variables often arising in a three-way context are concerned. 
We use the same way of measuring similarity for those three types of variables, based 
on comparable versions of the affinity coefficient. Then a consistent weighted linear 
combination of the partial or local affinities provides a global generalized affinity 
coefficient between statistical data units. 
 The data units can be either simple elements (e.g., subjects, individuals) or groups 
of objects in some population (e.g., subsamples of a sample, classes of a partition, 
subsets of the population). 
 We may assume that statistical data units refer to rows of a generalized table, while 
variables refer to generalized columns or sub-tables, where each column/sub-table 
may have a different number of “modalities”. Therefore in this three-way generalized 
data table each cell (crossing each data unit with each variable) may contain instead 
of one, a set of different values – for instance a frequency distribution (histogram), 
a binary vector or an interval – depending on the variable type. 
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 A methodology to find clustering models or adaptive families of clustering 
models, based on some (successive) generalizations of the so-called affinity coef-
ficient, has been developed for such kind of data (e.g. [1, 2], [4–7] ), in the scope of 
several national and European research projects on multivariate data analysis and 
modelling. 
 The next section presents an overview of the three-way clustering approach 
based on the weighted generalized affinity coefficient of statistical data units. In 
Section 3 we extend this coefficient to three way data when mixed type of variables 
appear, namely in case of histogram, binary and interval-type variables. Section 4 
illustrates how the extended coefficient works in a small example issued from the 
literature of symbolic data analysis [8, 9]. Section 5 presents some conclusions and 
future developments. So far applications in real data were made in biomedicine, 
education and marketing. 

2.  Weighted Generalized Affinity and Asymptotic Permutational
     Standardized Coefficients 

Let D be a set of statistical data units and let V be a set of p variables, as depicted 
in the previous section. Here we will be concerned with clustering models on the 
set of data units.
 The weighted generalized affinity coefficient a(k, k' ) between a pair of data units 
k, k' ∈ D (k, k' = 1,…,n), may be defined in a three-way context, as the weighted mean 
of local affinities between k and k' over the j-th variable (j = 1,…, p), as follows:

   a k k aff k k j
x

x

x

xj
j

p

j
j

p
kj

kj

k j

k j

( , , ;
.

′ ′ ′

′

)    = ⋅ ( ) = ⋅ ⋅
= =

∑ ∑π π
1 1

� �

⋅⋅=
∑
� 1

m

,  (1)

where: aff (k, k';j) is the local affinity over the j-th variable, mj represents the number 
of modalities in the j-th variable; xkjℓ is a real value whose meaning depends on the 
type of j-th variable (e.g. a discrete variable described by a frequency distribution or 
histogram, a binary vector or an interval variable) or equivalently on the nature of 
j-th corresponding sub-table; and πj are weights such that 0 ≤ πj ≤ 1, Σ π j = 1. Either 
the local affinities or the whole weighted generalized affinity coefficient, take values 
in the interval [0, 1] and satisfy the set of main proprieties of a similarity coefficient 
(e.g. [1, 5]). If all mj are equal, say, to m, and all modalities are associated to the same 
experimental situation S, for instance space or time, then one gets a three dimensional 
real-valued matrix or table X = D×V×S = {xijℓ , i = 1,…,n; j = 1,…,p; ℓ = 1,…,m}.  
Note that in this case, a global affinity coefficient of two complete p-dimensional 
data units k, k' ∈ D, or p-multivariate affinity, might be defined in a similar way over 
the whole set of pairs ( j, j' ) of variables. In the present work we are dealing with the 
more generalized table X as described above.
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 Let us suppose that some prior knowledge on the data base may be taken in ac-
count such as statistical reference hypothesis allowing us to compute (asymptotic) 
standardized affinity values and/or the corresponding (asymptotic) cumulative distri-
bution function values. Then new similarity coefficients arise – and as a result new 
probabilistic clustering models (PCM), instead of empirical clustering models may be 
selected. Thus a reference hypothesis usually stands in such a probabilistic approach 
not only as a convenient reference point, but also by having a natural interpretation, 
depending on the type of data and context. 
 In a three-way clustering probabilistic analysis, a permutational reference 
hypothesis R based on a well known limit theorem of Wald and Wolfowitz (other 
reference hypothesis have been used based, for instance, on the limit theorem of 
delta-method), may be applied very often [5]. Then the random variable aff (k, k'; j)   
has asymptotic normal distribution, [2, 3, 5], whose asymptotic mean value and 
variance are as follows:
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Therefore, if such reference hypothesis R holds, this leads us to a local asymptotic 
normal coefficient affWW (k, k'; j) that, it is easy to prove, also satisfies the main 
properties of a similarity coefficient. This coefficient applies in the present work. 
So, instead of using the basic generalized affinity coefficient  a(k, k' ) between data 
units k, k' ∈ D (k, k' = 1,…,n), we will use:

   a k k a k k aff k k jWW
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The previous results can also bring us to a third coefficient related to affinity meas-
urement, that is a probabilistic coefficient αR (k, k' ) between two data units k, k' ∈ D 
(k, k' = 1,…,n), as follows: 

   aR(k, k' ) = PR(A*(k, k' ) ≤ a*(k, k' )) ≅ âR(k, k' ) = Φ(a*(k, k' )), 

where Φ denotes the cumulative distribution function of the standard normal distri-
bution and A* represents an asymptotic standardized random variable. A large value 



13Measuring Similarity of Complex...

of the probabilistic coefficient means that the “observed” affinity value is “signifi-
cantly” larger than one might expected, under the above reference hypothesis. Thus 
the probabilistic coefficient validates the affinity coefficient between two data units 
k, k' in a probabilistic scale (e.g. [3, 5], [10, 12]). This led αR(k, k' ) to be sometimes 
roughly called “Validity Link” or VL affinity coefficient. Again it is a similarity 
coefficient, which takes values in the interval [0, 1]. In the present work we will not 
use this probabilistic coefficient yet. 

3. Clustering of Three-way Data Units Described
    by Heterogeneous and Complex Variables

 
Let T be a data matrix for n statistical data units (usually groups of individuals) and V 
a set of p variables of different types. We assume that Yj is a discrete or a categorical 
(modal) variable with mj (ℓ = 1,...,mj) modalities, variable Yj′ is a mj′ – dimensional 
binary vector and variable Yj″ is an interval variable, where j, j′ and j″ belong to 
{1,…,p} [1–3, 7]. Thus the corresponding sub-tables have n rows, and the k-th row 
(k = 1,…,n) in each sub-table contains: for Yj , a frequency distribution (nkj1,...,nkjmj

), 
where nkjℓ  is the number of individuals in the k-th data unit k who share the ℓ-th 
category of  the j-th variable;  for Yj′, an element {0,1}k

mj′ of the power set {0, 1}mj′, 
the whole binary sub-table being an element of {0, 1}n×mj′ ; for Yj″ , an interval Ikj″  
of the real axis. Thus the dataset may be represented by the following generalized 
table T: 

Table 1. Generalized Data Matrix

D\V … Yj … Yj′ … Yj″ …

… ... … … … …

k … (nkj1,...,nkjmj) … {0,1}k
mj′ … Ikj″ …

… ... … … … … …

k′ … (nk′j1,...,nk′jmj) … {0,1}k′ 
mj′ … Ik′j″ …

… ... … … … … …

The generalized local affinity coefficient formula given in the previous section ap-
plies for each of the three types of variables and we have:
Discrete and categorical variable: It is easy to see that all the formulae and re-
sults mentioned above hold for Yj variable, replacing xkjℓ (xk′jℓ) by the frequency nkjℓ 
(nk′jℓ) of ℓ-th category or modality (ℓ = 1,...,mj). Hence the local affinity aff (k, k'; j)
over the j-th variable measures the similarity between the two profile vectors (his-
tograms) associated to the pair of data units k, k' ∈ D (k, k' = 1,…,n) on the j-th 
sub-table.
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Binary vector: Let us take now variable Yj′. The local affinity aff (k, k'; j' ) may be 
computed from the 2×2 contingency table associated to the pair (k, k' ) of rows in 
the j'-th binary sub-table:

Table 2. Table of agreements and disagreements for a binary vector

k \ k′ Agreement (1) Disagreement (0) Total

1 s x xj kj k j
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νj′ + tj′ = mj′ – mkj′

Total sj′ + νj′ = mk′j′ uj′ + tj′ = mj′ – mk′j′ mj′

where: sj′ is the cardinal of positive agreements (xkj′ℓ = xk′j′ℓ = 1); tj′ is the cardinal of 
negative agreements (xkj′ℓ = xk′j′ℓ = 0); uj′ and vj′ are the cardinals of disagreements 
(respectively xkj′ℓ = 1, xk′j′ℓ = 0 and xkj′ℓ = 0, xk′j′ℓ = 1). Therefore the local affinity is 
defined as in formula (1) above and it gives:
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that is the well known Ochiai coefficient for binary data.

Interval-type variable: Let Yj″ be an interval variable, associated to a generalized 
column j″ , where each cell (k,j″) contains an interval Ikj″ , (k =1,…,n).
Let Ij″ be the union of the intervals Ikj″ : Ij″ = ∪ Ikj″ (k =1,…,n).
Let {Ij″ℓ : ℓ = 1,…,mj″} be a set of mj″ elementary intervals, such that the following 
properties hold, for ℓ,ℓ′ = 1,…,mj″ , ℓ ≠ ℓ′; k = 1,...,n:
1. Ij″ = ∪ Ij″ℓ ;

2. I Ij j″ ″ ′� �∩ = 0 ;    

3. I I Ikj j j″ ″ ″∩ =� � , if I Ikj j″ ″∩ ≠� 0 ; I Ikj j″ ″∩ =� 0 , otherwise;

where ⎥ ⎥  represents the interval range.

Let xkj″ℓ be x I Ikj kj j″ ″ ″� �= ∩ .

Then x Ikj j″ ″� �=  if I I Ikj j j″ ″ ″∩ =� � ;  xkj″ℓ = 0,  otherwise. 
Therefore we also have:
xkj″ ″• = Ikj ,  xk j′ ″ ′ ″• = Ik j   and x x I Ikj k j kj k j

mj
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Hence the local affinity aff (Ikj″ , Ik′j″ ) = aff (k, k'; j" ) is also defined as in formula (1) 
above and we have, for k =1,…,n; ℓ = 1,...,mj’’:
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Consequently the local affinity aff (k, k'; j" ) is a generalized Ochiai coefficient, which 
may be computed from the generalized 2×2 contingency Table 3, associated to the 
pair  of intervals over the j"-th generalized column/sub-table of the table T: 

Table 3. Table of agreements and disagreements for an interval-variable

k \ k' Agreement Disagreement Total

Agreement s I Ij kj k j″ ″ ′ ″= ∩ u I Ij kj k j
c

″ ″ ′ ″= ∩ s u Ij j kj″ ″ ″+ =

Disagreement v I Ij kj
c

k j″ ″ ′ ″= ∩ t I Ij kj
c

k j
c

″ ″ ′ ″= ∩ v t Ij j kj
c

″ ″ ″+ =

Total s v Ij j k j″ ″ ′ ″+ = u t Ij j k j
c

″ ″ ′ ″+ = I j″

Here I ckj" represents the complementary set of Ikj" in the domain Ij".

Therefore the generalized local affinity coefficient given in the previous section in (1) 
applies for each of the three types of variables. In case of a binary vector or an inter-
val variable, we obtain the Ochiai coefficient and the generalized Ochiai coefficient, 
respectively. Moreover the local standardized affinity coefficients may be computed 
in the same way, for each one of the three types of variables. Then a weighted general-
ized affinity coefficient a(k, k' ) between a pair of data units k, k' ∈ D (k, k' = 1,…,n) 
can also apply and consequently both asymptotic normalized and probabilistic as-
sociated coefficients hold as well.

4. Example/Case Study

Since for discrete and categorical variables the formula (1) holds just replacing real 
values by frequencies the most interesting cases appear to be those where binary 
and interval variables are simultaneously concerned. Here we use a small example 
satisfying that requirement. 

 Table 4 illustrates the data set which is composed of 8 oils and fats (1–Linseed 
oil (LS ), 2–Perilla oil (P), 3–Cotton seed (CS ), 4–Sesame oil (S ), 5–Camellia (C ), 
6–Olive oil (O), 7–Beef Tallow (T ), 8–Lard (L )) described in terms of four interval 
variables and one nominal qualitative feature [8, 9]. 

 The hierarchical clustering agglomerative models for the eight complex/symbolic 
data units (8 oils and fats) were based on the weighted generalized affinity coefficient 
with equal weights, 
 j = 1/p.
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Table 4. Data Matrix (Fats and Oils) 

Sample
name

Specific_gravity
(g/cm3)

Freezing point
(ºC)

Iodine 
value

Saponification
value

Major Fatty
Acids

LS [0.930, 0.935] [–27, –8] [170, 204] [118, 196] L, Ln, O, P, M
P [0.930, 0.937] [– 5, –4] [192, 208] [188, 197] L, Ln, O, P, S

CS [0.916, 0.918] [–6, –1] [99, 113] [189, 198] L, O, P, M, S
S [0.920, 0.926] [–6, –4] [104, 116] [187, 193] L, O, P, S, A
C [0.916, 0.917] [–21, –15] [80, 82] [189, 193] L, O
O [0.914, 0.919] [0, 6] [79, 90] [187, 196] L, O, P, S
T [0.860, 0.870] [30, 38] [40, 48] [190, 199] O, P, M, S, C
L [0.858, 0.864] [22, 32] [53, 77] [190, 202] L, O, P, M, S, Lu

L: Linoleic acid Ln: Linolenic acid O: Oleic acid P: Palmitic acid  M: Myristic acid 
S: Searic acid A:  Arachic acid C: Capric acid  Lu: Lauric acid

 Notice that in order to compute for instance the local affinities between all the 
sample pairs over the first (generalized) column/interval variable, Specific_gravity 
(g/cm3), a sub-table with 13 columns corresponding to a set of elementary intervals 
was computed. Each column of this sub-table contains the ranges of the intersection 
intervals between each elementary interval and each one of the 8 intervals described 
in the first (generalized) column above. 
 The last generalized column of Table 4, representing the Major Fatty Acids, may 
be written as a binary sub-table with nine columns. 
 Table 5 contains the values of the resulting similarity matrix. Two classical 
aggregation criteria – single linkage and complete linkage – and three probabilis-
tic aggregation criteria from an adaptive (parametric) family [3, 6, 11] were used 
– respectively the Algorithms AVL, AVB and AVM. The results were very similar, 
showing a strong data structure. Figure 1 represents the dendrogram obtained by the 
AVB method.

Table 5.  Similarity Matrix (Fats and Oils): weighted generalized affinity coefficient with equal weights

Sample 
name LS P CS S C O T L

LS 1.000000

P 0.492318 1.000000

CS 0.212840 0.427221 1.000000

S 0.175470 0.437504 0.534230 1.000000

C 0.284173 0.259825 0.401246 0.289791 1.000000

O 0.202101 0.356663 0.460931 0.342185 0.449477 1.000000

T 0.165291 0.275556 0.337778 0.201650 0.163246 0.267497 1.000000

L 0.185283 0.280774 0.336534 0.216770 0.202073 0.278769 0.467265 1.000000
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 The dendrogram of Fig. 1 is a good illustration for chemical properties of the 
given fats and oils. It is known that both elements of each one of the sample pairs 
(LS, P), (CS, S), (C, O) have similar properties: LS and P are used for painting; CS 
and S for food; and C and O for cosmetics. On the other hand the pair (T, L) has 
animal origin. In addition Cluster {CS, S, C, O} has been found in other statistical 
approaches as well, particularly in [8, 9].

Fig. 1. AVB Dendrogram

5. Conclusion. Future Developments 

The weighted generalized affinity coefficient a(k,k' ) defined as above supports in 
a consistent way cluster analysis models for statistical data units, when mixed and 
complex variable types are present in a database. Besides, the asymptotic general-
ized coefficient  aWW (k,k' ) is often applied instead of a(k,k' ). Indeed, if V is a set of 
p independent heterogeneous variables, using aWW (k,k' ) instead of a(k,k' ) means 
doing local standardization accordingly to the different variable types, which in this 
way all become asymptotic standard normal variables as well as their convex linear 
combination, aW (k,k' ). Furthermore, a probabilistic coefficient of VL kind may be 
applied in this context. Then empirical or semi-probabilistic clustering models can 
be built up over the set of statistical data units. Applications are being developed in 
health sciences, education and   management (e.g. [2, 3, 7, 13]). 
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