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It is presented a method of SPECT (single-photon emission tomography) cerebral images 
examination based on morphological spectra. The advantages of the SPECT imaging in 
early  diagnosing of encephalic diseases are emphasized. The detected radiation levels in 
the SPECT imaging are visualized by luminance levels which give insight into the lesions 
of cerebral tissue. It is shown that a rough, on luminance level based, examination of the 
SPECT images can be improved if more sophisticated analytical methods are used.  Basic 
notions and properties of morphological spectra and their applicability as tools for biome-
dical image analysis are shortly reminded. A simple formula for reversing transformation 
reconstructing of original image on the basis of a given morphological spectrum is presented. 
Results of experiments consisting in comparison of the morphological spectra calculated 
for selected pairs of testing windows in the SPECT cerebral images are shown. It has been 
shown that the morphological spectra can better suit to an effective comparison of views 
of the cerebral regions located symmetrically with respect to the brain axis separating the 
left and right cerebral hemispheres than the averaged luminance level. 

K e y w o r d s: computer-assisted image processing, brain imaging, SPECT imaging, 
morphological spectra

1. Introduction

Modern medical imaging methods are aimed at low-invasive inspection into anatomy, 
morphology and/or functions of inner human organs. So, they became one of the 
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most powerful tools of medical diagnosis, very important in early detection of the 
most dangerous and frequently occurring diseases. Physicians have at their disposal 
a large variety of medical imaging modalities, like: X-ray imaging, ultrasonography 
(USG), computer tomography (CT), single-photon emission tomography (SPECT), 
positron-emission tomography (PET), nuclear magnetic resonance (NMR), thermog-
raphy (ThG), etc. [1, 2]. In each of the above-mentioned cases medical applicability, 
imaging quality, costs, and invasiveness are the main features taken into consideration 
in the medical imaging modality assessment.
 To each medical diagnostic problem the most preferable imaging modalities can 
be assigned. In particular, the demands for preliminary and rough on one hand, and 
deeper  and more accurate diagnostic methods on the other hand, may lead to differ-
ent preferences in choosing the right imaging modalities. In emergent medical cases
(e.g. cardiac infarct, cerebral stroke, arterial embolism, etc.) high diagnostic sensitivity 
and short time of decision-making may be critical in patients’ life saving. Screening 
medical examinations aimed at early detection of dangerous in social sense and scale 
diseases are usually based on high sensitivity, low cost diagnostic procedures. High 
diagnostic specificity and high accuracy localization of stricken by a disease inner or-
gan’s area become highly important in planning advanced therapeutic procedures (e.g. 
surgical intervention, radiological treatment, etc.). That is why, despite the development 
of the modern medical imaging modalities (PET, NMR), some older ones are still used 
and improved [3]. The SPECT imaging based on the principle of reconstruction of 
γ-type radiation intensity distribution map caused by a radionuclide introduced to the 
examined organ belong to such methods. Modern γ-cameras (containing rotating rings 
of γ-detectors) used to the SPECT images acquisition  reduce the image acquisition 
time to several minutes and deliver radiological images of 128×128 pixels standard. 
This may seem to be rather poor in comparison to other modalities (X-ray, CT, USG), 
however, a high tissue specificity (if adequate  nuclides are used) makes the SPECT 
imaging competitive to the other ones in soft organs (brain, thyroid, liver, heart, kid-
neys, etc.) examinations. The simplest way to various tissues discrimination in the 
SPECT imaging technique is based on a comparison of radiation intensity registered 
in selected image areas [1, 2]. A rough diagnostic interpretation of so-obtained data is 
possible due to a visualization of a map of radiation intensity distribution in a given 
observation area. However, a deeper diagnosis based on numerical parameters needs 
using a computer-assistant image processing technique. In such case the radiation 
intensity map should be imposed on the anatomical scheme of an examined organ, 
regions of interest should be selected, geometrical and/or morphological parameters 
should be evaluated and the vectors of parameters should be subjected to a final diag-
nostic interpretation. In particular, they quantitatively characterize the anatomically 
localized regions of abnormal penetration levels into the observed organ of a nuclide 
marker. From a formal point of view the registered radiation intensity is a 2D image 
changing slowly in time. This means that useful diagnostic information is delivered 
by its relative rather than by absolute local values. Moreover, spatial resolution of 
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the images determines their ability to visualize fine morphological structures existing 
in the examined objects. Spatial averaging of local radiation intensity values causes 
thus a loss of information useful to discrimination of tissues of different micro-mor-
phological structure. Saving of this information is possible, if micro-morphological 
structures, visible as specific textures covering the selected parts of images, together 
with locally averaged radiation intensities in radiological image examination are taken 
into consideration. General methods of texture analysis are widely described in the 
literature; for this purpose various concepts based on spectral or statistical approaches 
were proposed [4–8]. However, the problem of choosing the most suitable method of 
the cerebral images analysis is still open. The problem consists both in a detection of 
differences of textures and an accurate segmentation of the areas where the differences 
are medically significant. That is why a series of works aimed at proving and comparing 
several methods has been undertaken within a collaboration of the authors represent-
ing both, engineering and medical approach to the problem. In [9] a simple approach 
based on the mean values and standard deviations of local luminance levels has been 
presented. In [10] simple statistical approach has been compared to the entropy and 
fractal dimension based methods. In this paper a concept of using the morphological 
spectra to analysis of radiological SPECT images is presented.
 The idea of the morphological spectra as tools for texture analysis was originally 
proposed in [11, 12]. The morphological spectra seem to have several interesting 
properties as the tools of texture analysis: they are simple to be calculated, they can 
be used to image enhancement and due to their hierarchical structure they make pos-
sible analysis of the textures on different levels of morphological structures detailing. 
However, in this paper our attention is focused on the aspect of differences between 
the textures detection.
 The organization of this paper is as follows. In Sec. 2 of the paper basic notions 
and properties of the morphological spectra are shortly reminded. Experiments per-
formed on the SPECT human brain images analyzed with 4th level morphological 
spectra are described in Sec. 3. Sec. 4 contains conclusions and some suggestions 
concerning further works.

2. Selected Properties of the Morphological Spectra

Morphological spectra are defined for 2D monochromatic images represented by 
bit-maps of 2m × 2n size, where m and n are fixed natural numbers. Other sizes of 
the bit-maps are admissible, however, in such case the bitmap should be extended 
(by adding 0-values) to the nearest standard size. The morphological spectra form a 
hierarchical, multi-level structure. The highest level k* of the morphological spectra 
is given by k* = min(m,n). The spectral components of k-th level, 0 ≤ k ≤ k*, are cal-
culated on basic windows having the form of 2k × 2k squares. The components of 0th 
level spectrum are by definition identical to the pixel values of the original image. For 
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calculation of the spectral components the image is partitioned into 2m–k × 2n–k adjacent 
basic windows and the values of a given spectral component for each basic window 
are calculated independently. Thus, the spectral component of the total image takes 
the form of a 2m–k × 2n–k real matrix. The k-th level morphological spectrum consists 
of 22k components. The components are labeled and can be lexicographically ordered 
by k-element strings of symbols Σ, V, H, X. Therefore, the 1st level morphological 
spectrum consists of the components Σ, V, H and X only. The 2nd level morphologi-
cal spectrum consists of 16 components: ΣΣ, ΣV, ΣH, ΣX, VΣ, VV, VH, VX, HΣ, HV, 
HH, HX, XΣ, XV, XH and XX, etc.a
 The components of the morphological spectra can be represented by a tree with 
nodes assigned to the components and edges corresponding to the relationships of 
direct hierarchical connections between the components of two consecutive spectrum 
levels. The root of the tree is assigned to the 0th level component (the initial image 
bit-map). For calculation of the spectral components special binary matrices called 
spectral masks are used. For the 1st level morphological spectra the masks have the 
following form (for the sake of simplicity the masks are denoted by the same symbols 
as the corresponding spectral components excepting that they are printed in bolds):
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 Then calculation of the spectral components is based on a direct product of 
matrices defined as follows. If there are given two matrices of equal sizes: A = [ap,q] 
and B = [bp,q] then their direct product is defined as a matrix C = A•B = [ap,q⋅bp,q], 
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Finally, the spectral components are calculated as sums of the elements of the cor-
responding matrices:

  vΣ  = ξ1,1 + ξ1,2 + ξ2,1 + ξ2,2,        vV  =  −ξ1,1 + ξ1,2 − ξ2,1 + ξ2,2,
  vH = −ξ1,1 −ξ1,2 + ξ2,1 + ξ2,2,       vX  =  −ξ1,1 + ξ1,2 + ξ2,1 − ξ2,2   

}. (3)

The spectral components of higher level can be calculated in similar way; however, the 
k-th level masks take the form of 22k×22k matrices and the direct products are calculated 
for 22k×22k-size basic windows. The 2nd and 3rd-level masks are available in [8].

 a Spectral components can also be defined using systems of orthogonal Walsh functions. 
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 The morphological spectra can also be calculated by using an unified model. 
For this purpose the masks of a given level are presented in the form of spectral 
matrices of 24k × 24k size of which rows correspond to lexicographically ordered 
spectral components and columns are assigned to lexicographically ordered pixels in 
the basic windows. For example, the 1st level masks given by (1) will be represented 
by the spectral matrix:
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 Spectral matrices of any level are orthogonal matrices, i.e. such that

   M (k) ⋅ (M (k)) tr = (M (k)) tr ⋅ M (k)  = 22k ⋅ I (5)

where tr denotes matrix transposition and I is an unity matrix of 24k × 24k size. If the 
basic window Ξ is expanded into a vector:

   U (k) = [ξ1,1, ξ1,2,…, ξ1,n, ξ2,1,…, ξ2,n,..., ξm,1,..., ξm,n] (6)

then the morphological spectrum can be calculated as:

   (V (k))tr = M (k) ⋅ (U (k))tr. (7)

Multiplying both sides of (7) on the left by (M (k)) tr and taking (5) into account we 
obtain:

   (M (k))tr⋅ (V (k))tr  = 22k⋅(U (k))tr (8)

and finally:

   U (k) = 2 –2k⋅ V (k) ⋅ M (k) . (9)

Therefore, this is a very simple formula for the bit-map U (k) reconstruction when its 
morphological spectrum V (k) is given. 

3. Using the Morphological Spectra to Analysis of the SPECT
    Brain Images

In rough early diagnosis of certain types of encephalopathy a comparison of the 
views of respective areas in the left and right cerebral hemisphere in radionuclide 
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images plays an important role. The differences may indicate the regions of encepha-
litis, encephalomalacia, encephalorrhagia, cerebral ischaemia, epileptic foci, etc. 
High diagnostic sensitivity of difference detection is a crucial point in this type of 
diagnostic procedure. A comparison of luminance levels in the corresponding brain 
image areas, chosen symmetrically with respect to the cerebral axis, is the simplest 
method of cerebral pathological changes detection. However, this approach neglects 
the morphological details of cerebral structures under observation. It may happen 
that they contain useful diagnostic information despite the fact that no noticeable 
difference between the mean luminance levels in the regions under observation oc-
curs. In such case the additional information may be supplied by a comparison of the 
morphological spectra of the observed regions. For this purpose, analyzed images 
should be divided into square windows localized symmetrically with respect to the 
main cerebral axis. The size of the windows should be chosen so as to satisfy the 
conditions of being used as the basic windows in the morphological spectra calcu-
lation. Then, the morphological spectra of symmetrically chosen pairs of windows 
should be calculated and compared.
 The differences between the pairs of the morphological spectra in several ways 
can be evaluated. In the simplest case the spectra can be considered as real vectors 
and the distance measures (absolute, Euclidean, Tshebyshevian, etc.) between the 
vectors can be calculated. An alternative, more advanced approach may consist in 
emphasizing the role of selected vector components according to the morphologi-
cal specificity of the examined brain regions. In this paper the first approach is 
considered only.
 The aim of investigation consisted in proving the general usefulness of the 
morphological spectra to detect differences between selected areas in brain images 
caused by their different ability to absorb the nuclide markers. The experiments had 
to show, whether and how much an intuitive similarity assessment of selected pairs 
of fragments of cerebral images can be improved by using a quantitative comparison 
of the morphological spectra of the corresponding fragments. For this purpose 10 
SPECT images of human brains (delivered from the Department of Nuclear Medicine 
of the Medical Academy in Warsaw) were examined. The images were of 128×128 
pixels size, according to a typical standard of the SPECT images. Examination of 
the images consisted of the following steps:
 1. Each image was partitioned into 64 square testing windows of 16 × 16 pixels 
size which have been labeled by their row (from 1 to 8) and column (from A to H) 
indexes.
 2. From each image 10 pairs of the testing windows have been selected so that 
five of them corresponded to the regions classified as “similar” and five other clas-
sified as “dissimilar” ones. So, there were obtained two testing sets of pairs of the 
“similar” and “dissimilar” testing windows. The so obtained testing sets represented a 
human intuitive understanding of “similarity” and of “dissimilarity” of image regions 
visualizing different types or states of cerebral tissues.
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 3. For each testing window the following (16 of 256 possible) 4th level morpho-
logical spectrum components:
 ΣΣΣΣ, ΣΣΣV, ΣΣΣH, ΣΣΣX, ΣΣVΣ, ΣΣVV,  ΣΣΣVH,  ΣΣVX,
 ΣΣHΣ, ΣΣHV, ΣΣHH, ΣΣHX, ΣΣXΣ, ΣΣXV, ΣΣXH, ΣΣXX 
were calculated. Each spectral component denoted as ΣΣPQ, where P,Q ∈ {Σ,V,H,X}, 
represents in fact a sum of 2nd level PQ spectral component values taken from ad-
jacent square sub-windows of 4 × 4 size, as illustrated in Fig. 1. This has been done 
in order to reduce 4 times the variance of the PQ component evaluation caused by 
random factors.  
 4. The 4th level spectral components were considered as 16-component vectors 
and for the selected pairs of testing windows the Euclidean distances of vectors were 
calculated. Let uαβ , α ∈ {1,2,…,8}, β∈ {A,B,…,H}denote a 16-component spectral 
vector of a testing window addressed by (α,β). Then the distances of the spectral 
vectors are described by the formula:

   d u u( , ) ( | |( ) ( )u uαβ εη κ αβ
κ

εη
κ= =Σ 1

16  | -|  )2  (10)

where u(κ)
αβ , u(κ)

εη denote, correspondingly, the κ-th components of the spectral 
vectors uαβ , uεη. The distance has been calculated for absolute values of the spectral 
components in order to avoid a dependence of the result on parallel shifts of the testing 
windows which may cause random changes of the signs of the components [12].

Fig. 1. Structure of a testing window

 Then the calculated distances have been non-increasingly ordered for a visu-
alization of their range of variation. Taking into account that a maximal distance of 
the spectral vectors corresponds to the minimal similarity of the testing windows 
and vice versa, the ordered sequence of distances also illustrates the variations of 
similarities. The results of calculations performed on a selected image are shown 
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below. In Figure 2 the position of 10 selected pairs of the testing windows in the 
given SPECT image is indicated by arrows, while Fig. 3 presents the corresponding 
sequence of ordered distances. It is interesting to observe that the largest distances of 
the spectral vectors do not obviously correspond to the pairs of the testing windows 
which seem to be rather “similar” (e.g., see the pair #3 (4F-5C)). On the other hand, 
some pairs of the testing windows, e.g. #9 (3B-6D) or #10 (3B-5C) seem to be “dis-
similar” while their spectral distances are relatively small. In order to investigate this 
paradox it was defined a relative variations range (RVR) of luminance, symbolically 
denoted by λ and given by the formula:

   λ αβ εη

αβ εη
=

−
⋅

| |

, )

ΣΣΣΣ ΣΣΣΣ
ΣΣΣΣ ΣΣΣΣmax(

 % .100  (12)

 The RVR of luminance takes value 100% if exactly one of the components 
ΣΣΣΣαβ or ΣΣΣΣεη takes value 0 and it takes value 0% if both the components are 
equal. The values of spectral distances and of the RVR of luminance in the above-
presented example are given in Table 1.

Fig. 2. A cerebral SPECT image with 10 pairs of the testing windows selected for comparison of their
 morphological spectra
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Table 1. Distances (in pixels) of the pairs of spectral vectors

No of
the pair

Pair of testing
windows

Distance
of spectral vectors λ (%)

 1 4F-7D 7990,372 19.89
 2 6D-7D 7493,312 12.37
 3 4F-5C 6631,004     9.697
 4 5C-7D 5173,26 11.29
 5 3B-4F 4825,785 97.99
 6 3B-7D 4818,821 98.39
 7 5C-6D 4187,57     1.212
 8 4F-6D 3716,497     8.589
 9 3B-6D 2809,894 98.16
10 3B-5C 2318,017 98.18

 It is interesting to see that the similarity of pairs of the testing windows evaluated 
on the basis of distance measures of the spectral vectors does not always coincide with 
those intuitively assessed by visual comparison of the testing windows. The pairs #3: 
4F – 5C (d = 6631.004) and #4: 5C – 7D (d = 5173.26) belonging to the left part of 
the graph represent here “dissimilar” pairs of spectral vectors.  However, the RVRs of 
luminance are: for 4F – 5C λ = 5.85%, for 5C – 7D λ = 6.84%.; they are thus rather 
low and this is why the corresponding pairs of the testing windows intuitively seem 
to be “similar”. This suggests that the real differences between the testing windows 
are here represented by other, not easily visible spectral components.
 On the other hand, looking at the pair #9: 3B – 6D one assess it as “dissimilar”, 
the RVR of luminance being λ = 96.39%. However, a relatively small spectral distance 
(d = 2809.894) leads to a classification of this pair as “similar”. 
 Calculations of similar type  have been performed for other SPECT images. 
In each image distances of the spectral vectors for selected 10 pairs of the testing 
windows were calculated and the minimal and maximal distances were found. Then 
the RVRs of spectral distances according to the formula:

Fig. 3. Non-increasingly ordered sequence of distances (in pixels) of the pairs of spectral vectors
corresponding to the testing windows indicated in Fig. 2
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   µ =
−

⋅
d d

d
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have been calculated. The higher is µ, the larger is the possibility of the pairs of the 
testing windows discrimination on the basis of their spectral distances. In Table 2 the 
results are presented together with the corresponding RVRs of luminance level.  

Table 2. Relative variations ranges of spectral distances (in pixels) and luminance level evaluated in 
    the selected images

No of 
image dmax dmin

µ
% λmax λmin

λ
%

#1 5014.93 2197.54 56.18 186 3  98.38
#2 2913.88  151.77 94.79 180 2  98.89
#3 4491.36  740.73 83.51 161 1  99.38
#4 3389.09  485.14 85.69 212 0 100.00
#5 1920.62  363.57 81.07 146 0 100.00
#6 3129.45  304.20 90.28 210 3  98.57
#7 3632.05  435.72 87.98 213 4  98.12
#8 5351.49  106.51 98.01 185 2  98.92

 At a first glance it might seem that the RVRs of luminance (λ) better suit to 
discrimination of the differences between the testing windows than those of spectral 
distances (µ). However, high values of λ reaching 100% are caused by the fact that 
minimal luminance levels in certain images (#4 and #5) are equal 0, while the norm 
of the spectral vectors may be equal 0 only in the case of a totally black image. The 
results suggest that discriminative power of the different spectral components may 
be different, the luminance level (represented by the ΣΣΣΣ component) being one 
of them. In order to prove it for the selected images the RVRs of all the spectral 
components were calculated. Table 3 presents the results obtained for one selected 
image (#2).

Table 3. Relative variations range of the spectral components of a selected image (#2)

Comp. ΣΣΣΣ ΣΣΣV ΣΣΣH ΣΣΣX ΣΣVΣ ΣΣVV ΣΣVH ΣΣVX
Min. 2 205 52 35 97 3 4 7
Max. 180 1391 2586 734 641 316 366 88
λ (%) 98.89 85.26 97.99 95.23 84.87 99.05 98.91 92.05

Comp. ΣΣHΣ ΣΣHV ΣΣHH ΣΣHX ΣΣXΣ ΣΣXV ΣΣXH ΣΣXX
Min. 20 20 4 1 11 0 7 1
Max. 1250 366 642 82 208 43 48 43
λ (%) 98.40 94.54 99.38 98.78 94.71 100.0 85.42 97.67
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 It can be observed that four spectral components: ΣΣVV, ΣΣVH, ΣΣHH and 
ΣΣXV have higher RVRs (signed in bold) than this based on luminance level (ΣΣΣΣ). 
A similar situation was observed in other images. This means that not only other 
(besides the luminance level) spectral components can discriminate the differences 
between the testing windows but also they are sensitive to their specific morphological 
structures. In Table 4 there are presented the spectral components that in the selected 
images have been observed as having the highest RVRs. 

Table 4. Spectral components having the highest RVRs (λ) in the selected analysed images

Nr of image 1st comp
λ (%)

2nd comp
λ (%)

3rd comp
λ (%)

4th comp
λ (%)

5th comp
λ (%)

6th comp
λ (%)

#1 ΣΣΣX
99.57

ΣΣΣV
99.25

ΣΣHV
98.43

ΣΣXV
98.61

ΣΣΣΣ
98.39

ΣΣVΣ
97.68

#2 ΣΣXV
100.0

ΣΣHH
99.38

ΣΣVV
99.05

ΣΣVH
98.91

ΣΣHX
98.78

ΣΣHΣ
98.40

#3 ΣΣΣΣ
99.38

ΣΣΣH
98.57

ΣΣXV
98.46

ΣΣHΣ
98.04

ΣΣVX
97.96

ΣΣXX
97.62

#5 ΣΣΣΣ
100.0

ΣΣVH
99.15

ΣΣΣV
98.19

ΣΣXV
97.67

ΣΣXH
97.33

ΣΣVΣ
96.53

#6 ΣΣΣV
99.73

ΣΣΣH
99.49

ΣΣXΣ
99.19

ΣΣΣΣ
98.57

ΣΣΣX
98.40

ΣΣHΣ
98.42

 The spectral components that occur in this table have the following frequencies: 
ΣΣΣΣ and ΣΣXV – 4 times; ΣΣΣV, ΣΣΣH and ΣΣHΣ – 3 times, ΣΣVΣ and ΣΣVH – 2 
times, ΣΣΣX, ΣΣVV, ΣΣVX, ΣΣHV, ΣΣHH, ΣΣHX, ΣΣXΣ, ΣΣXH and ΣΣXX – 1 
time. The most frequently occurring components, as the most highly discriminating 
the differences between the testing windows can be recommended to be used to the 
analysis of the cerebral SPECT images. 
 In order to compare the discriminating power of luminance and other spectral 
components from several images there were selected 10 pairs of the testing windows 
symmetrically located with respect to the central vertical axis of the image. Such pairs 
are those that should be analyzed in the cerebral SPECT images. For the selected 
pairs there were taken into consideration the above-mentioned most recommended 
spectral components: ΣΣΣΣ, ΣΣXV, ΣΣΣV, ΣΣΣH and ΣΣHΣ. Then the relative dif-
ferences of component values for the given pairs of testing windows were calculated 
according to the formula:

   η = − ⋅| |
max( , )

%
u u

u u

’ "

’ "

 
100  (14)

where u´, u˝ denote the measured values of a given spectral component in the pair 
of the testing windows under consideration. Thus the higher η, the more sensible is 
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the given spectral component to the difference between the contents of the compared 
testing windows. The results are presented in Table 5.

Table 5. Relative differences of the selected spectral components applied to evaluate the pairs of the
   symmetrically located testing windows

Image
Pair of 
testing

windows

Spectral
distance (in 

pixels)

ΣΣΣΣ
η %

ΣΣXV
η %

ΣΣΣV
η %

ΣΣΣH
η %

ΣΣΣH
η %

#3 3D-3E 999.83  9.02 94.73 74.14 31.43 31.28
#3 4D-4E 1076.23  4.35 0.0 0.0 23.63 22.97
#3 7D-7E 1875.37  5.30 47.69 87.07 50.78 69.27
#4 3D-3E 1338.01  3.51 57.89 90.21 71.36 55.68
#5 3D-3E 1152.59  6.25 87.50 57.92 82.01 19.66
#5 7D-7E 1771.88  3.03 74.19 38.05 72.69 38.77
#6 1B-1G 304.20 40.00 83.33 98.57 77.42 59.26
#6 3D-3E 3044.03  6.06 93.55 43.78  9.28  5.81
#6 4D-4E 1310.57  2.38 50.00 40.63 19.28 21.27
#6 6C-6F 772.34 26.32 59.26 12.18 46.44 48.79

 It can be observed that in most cases the relative differences of the values of 
the components ΣΣXV, ΣΣΣV, ΣΣΣH and ΣΣΣH are higher than those of ΣΣΣΣ. 
This means that the given components better differentiate the contents of the testing 
windows than the average luminance level.

4. Conclusions

Morphological spectra are a flexible tool for medical images examination in the cases 
when discrimination of tissues is a basis of diagnostic reasoning. Calculation of the 
morphological spectra as well as reconstruction of the original image on the basis 
of its morphological spectrum is described by very simple algebraic operations. The 
morphological spectra, in particular, can be used to analysis of the cerebral SPECT 
images in order to detect the differences between areas localized symmetrically with 
respect to the axis separating the left and right cerebral hemispheres. An advantage 
of the approach to cerebral image analysis based on the morphological spectra in 
comparison to the statistical methods presented in [5] and [6] consists in the ability 
of a selection of image areas (regions of interest) based not only on luminance level 
(i.e. on its mean value, variance, etc.) but also on the specific isotropic or anisotropic 
morphological texture properties. It has been shown that some 4th level morphological 
spectral components, defined on 16×16 pixels testing windows, better discriminate 
the morphological properties of textures than the average luminance-level parameter. 
As such, they can better suite to detection of fine differences between the selected 
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regions of the left and the right cerebral hemisphere. In the forthcoming, a similar 
analysis of the 3rd level morphological spectra (of which components are defined 
on 8×8 testing windows, and thus, they admit image analysis with better resolution 
power) should be performed. However, good discriminative properties of the selected 
morphological spectral components should not obviously correspond to the cerebral 
tissues properties being of the high medical importance. Therefore, the proposed 
method of the cerebral SPECT images analysis should be verified on a larger set of 
clinical data provided with independent medical diagnoses. 
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