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In this paper, a novel method for characterizing the Gene Ontology (GO) composition of 
the gene clusters on basis of the decision rules is presented. The rules are expressed as 
logical functions of the Gene Ontology terms which are interpreted as binary attributes. 
A new method for evaluating the quality of decision rules based on statistical significance 
is developed. The presented approach is applied to the well-known data set and the results 
are compared with the results obtained by other authors.
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1. Introduction

The advent of the DNA microarray technology provided a great opportunity to better 
learn and understand complicated biological fundaments that rule the world of living 
organisms. Gene expression profiles obtained with the use of the DNA microarray 
technology allows analyzing simultaneously thousands of genes in a single experiment 
[1, 2]. Experiments in the laboratory provide the abundance of the data on biological 
and molecular process that brings both chances and challenges. Nowadays, without 
specialized mathematical and informatics tools, interpretation of the microarray data 
is impossible. 
 Development of the DNA microarrays entailed development of many com-
putational techniques and numerical algorithms — especially various data mining 
techniques appeared to be very useful and efficient in the field of analysis of specific 
biological data. Supervised classification allows to identify groups (clusters) of genes 
expressed differentially among different experimental conditions, while clustering 
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algorithms are used to identify groups of genes coexpressed in sequences of experi-
ments or in repeated experiments [3, 4]. Information on differential expression or 
coexpression of genes is helpful in predicting outcomes of further experiments or 
classifying biological samples on the basis of their gene expression profiles. Numer-
ous literature items report various results of this kind [5–10].
 Classification or clustering the results of microarray experiment is only one 
element of the DNA microarray analysis. Most of the algorithms that are commonly 
used for classification or clustering do not consider any biological knowledge that 
lies behind the processed data. Thus the obtained results need to be confronted with 
existing biological knowledge on genes, their classes and functions. Including the 
data on genes and their functions to the analysis paves the way towards extracting 
biological knowledge from the performed experiments. This aspect of the data analysis 
is often done by an expert in the field, frequently manually, which is time consuming 
for large-scale data. There is a strong motivation for supporting the experts work 
by developing computer systems for storing, organizing and presenting the relevant 
information. Even more desirable is developing data processing algorithms, including 
knowledge discovery, artificial intelligence and automatic reasoning for incorporating 
the biological knowledge of genes to the results of data clustering.
 In several past years the Gene Ontology (GO) database [11] became one of the most 
popular and widely used source of information on the genes and their products. There 
are many tools, methodologies and algorithms for using the GO terms that are available 
for the researchers. GO browsers, such as [12] allow one to characterize the clusters of 
genes obtained in some experiments by computing and comparing frequencies of the 
GO terms. More advanced methods, such as those presented in [13–18], allow combin-
ing the GO terms with various information processing methods to explain experimental 
results. Papers [13, 14] are devoted to methods for building sets of genes sharing com-
mon biological functions and for using these sets for classification and clusterization. 
Arguments are given that using gene-set approach leads to improving the quality of 
classification of samples on the basis of their expression profiles. In [15] methods and 
a computer program for forming the clusters of genes on the basis of their GO terms are 
presented. In [16] a graph-oriented approach for extracting the most important terms for 
the description of clusters of genes is proposed. In the papers [17, 18] computational 
intelligence methods including rough sets theory are used to predict biological functions 
of genes on the basis of levels of their expressions observed in experiments.
 In this paper, a novel method for characterizing the gene clusters on the basis 
of the decision rules expressed as logical functions of the GO terms, is presented. 
Decision rules are logical expressions that can be easily interpreted and understood 
by a human. To derive the decision rules the rough sets theory [19] is used which 
is a mathematical tool that allows to induce decision rules with good descriptive 
abilities. A method for assessment of the statistical significance of the decision rules 
that allows to evaluate the quality of obtained rules is also developed. The proposed 
approach is applied to the data set including expression profiles of the budding 
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yeast Saccharomyces cerevisiae published by Eisen et al. in [20]. For 10 clusters of 
the genes defined in [20] the GO characterization which follows from the proposed 
method is compared with the Eisen et al. description and the description obtained 
by Lee et al. [16] by the graph-oriented algorithm.

2. Methods

2.1.  Formulation of the Problem of Characterization of Gene Clusters by GO Terms

Let there be defined a set U of genes whose probes are placed on the DNA microar-
ray chip used in some experiment:

   U = {x1, x2,…, xN}. (1)

The set U consists of the genes, denoted as x1,…, xn , which are distinguished by 
labels. Each gene is described by a set of the GO terms, such as “tRNA processing”, 
“DNA binding”, “translation” that can be interpreted as binary attributes assuming 
values from a set {0,1}. 
 In a more formal manner, the following mapping for each attribute may be 
defined:

   a : x = a(x) ∈ {0,1}, (2)

where x ∈ U and denotes any gene, and a denotes an attribute from the whole set of at-
tributes describing all genes belonging to the set U. The above formula is interpreted in the 
following way: if e.g., a corresponds to the GO term “DNA binding”, then a(x) = 1 holds 
for all genes x which contain “DNA binding” among their GO terms. For other genes 
a(x) = 0.
 Let us consider a cluster of genes G ⊂ U, G = {x1, x2,…, xP} where each gene is 
annotated with the GO terms. The goal is to find the common biological meanings 
shared by genes composing the cluster and provide a method that allows describing 
the cluster G by the attributes (GO terms) of the genes x1, x2,…, xP. 
 The GO browsers, such as [12] allow comparing the composition of the GO terms 
between the analyzed gene clusters. The results of the analysis are presented in the 
form of the list of GO terms that are most significant in the investigated set of genes. 
Assuming the terminology used in this paper, the GO terms obtained by using a GO 
browser characterize the cluster G by single-attribute rules of the following form:

   IF a(x) = 1 THEN x ∈ U, (3)

which are either true or false. Using the frequency of the GO terms corresponding to 
a in G one may determine if the gene function or product corresponding to that GO 
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term is representative for the analyzed cluster G. The more genes the rule is true for, 
the more important is the GO term that appears in the left side of the rule. Apart from 
counting the frequencies of the GO terms, the important part of the computations is 
to evaluate the quality of the created rules. This is most frequently done by assessing 
the statistical significances of the rules by applying the hypergeometric test, Fisher 
exact test or the chi-square test for independence [12].
 In this paper, a new method for characterizing clusters of genes by GO terms, 
by using rules of the form more complex than (3), such as the one below:

   IF a1(x) = v1 and a2(x) = v2 … and aR(x) = vR THEN x ∈ G , (4)

where v1,…,vR are values from the set {0,1}is proposed. Some aspects of deriving 
rules of the form (4), evaluating their significance and using them for real data are 
described in the sequel.

2.2. Rough Sets

To compute the decision rules the rough sets theory [19] – a mathematical tool that 
allows to compute the decision rules of good, descriptive features is used. In the 
rough sets theory the data are represented in the form of the information system S 
which is a pair S = (U, A), where U is non-empty set of objects called universe, and 
A is a set of attributes. The attribute a∈A is a map a:U → Va, where Va is the value 
set of the attribute a. Objects from the set U represent the investigated cases (genes 
in the experiment) and attributes are features describing these objects. 
 The concept of the information system may be extended to the concept of 
a decision table which is also a pair DT = (U, A∪{d}) with one distinguished at-
tribute d ∉ A called decision attribute with range Dd. One can see that the decision 
attribute determines a partition of the universe U = {Xd1, Xd2, … , Xdk} with respect 
to the value of decision attribute di. Each i-th set from this partition is called the i-th 
decision class. 
 A decision rule is a logical expression of the form: 

   IF a1∈Va1 and a2∈Va2 and … and an∈Van THEN d = v , (5)

where v ∈ Dd , {a1, a2, …, an} ⊆ A and Vai ⊆ Dai , i = 1,2,…, n. The left side of the 
rule is called the conditional part while the right side is called the decision part. An 
expression an ∈ Van is called a descriptor. The interpretation of the rule is intuitive 
– values of the attributes on the left-hand side of the rule should imply the value of 
the decision attribute. The object is recognized by the decision rule if its attributes 
values are concordant with the conditional part of the rule. The object supports the 
decision rule if it is recognized by the rule and the decision assigned to the object is 
the same as the decision pointed by the rule.
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 In the case of using the decision table DT for characterizing the results of the 
DNA microarray experiment, the set of conditional attributes A is represented by 
all GO terms, that describe the whole set of genes, and Va = {0,1}. The universe U 
is a set of genes, whose probes were placed in the analyzed DNA microarray chip, 
and the value of the decision attribute d is an index of cluster, to which a given gene 
was assigned by some clustering algorithm. Using the above assumptions and the 
rough sets theory as a tool to induce decision rules, the rules are obtained with the 
conditional part, that consists of the conjunction of GO terms, and the decision part 
pointing to a cluster, which is considered to be best described by these GO terms.

2.3. Computing Decision Rules

Before inducing decision rules, the attributes that are irrelevant or redundant with 
respect to the knowledge represented by the whole data set should be eliminated 
from the information system. In the rough sets theory a minimal subset of attributes 
that preserves the same abilities of discerning the objects with respect to different 
decision classes, as the whole set of attributes, is called a minimal relative reduct 
[19]. Computation of the relative reduct is a very important step of preprocessing 
the data, because it allows to obtain the decision table, which contains the relevant 
information. Additionally, the induced decision rules are both more structured and 
compact and therefore easier to understand and interpret.
 The problem of finding a minimal (relative) reduct has been proven to be NP-
hard [21], thus a heuristic algorithm is always employed to find it. In [22] Nguyen 
and Nguyen proposed the algorithm for computing the approximate reduct of an 
information system for a large-scale data sets. In this paper the modified version 
of the algorithm that makes it possible to compute approximate relative reduct for 
adecision system [23] was used.
 Having the decision table reduced, the sequential covering algorithm [24] was 
applied to induce decision rules. The sequential covering method involves learning 
one rule for a given object. After the rule induction, the whole set of the objects is 
searched and all the objects covered by that rule are removed from the processed data. 
The learn-one-rule method is based on the idea that for any object the set of attributes 
from the relative reduct determines its decision class. Assuming that a relative reduct 
for a decision table is given, the algorithm for computing the set of decision rules 
using the sequential covering method is given by the following pseudocode: 

 input: DT = (U,A∪{d}) , R ∈ REDDT(A, d) – set of relative reducts
 output: RUL(DT) – set of decision rules for DT
 begin
  RUL(DT) = ∅
  while U ≠ ∅
   r := ∧

∈a Ri
 ai = ai(u)→d = d(u)   /* create a decision rule r  */
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   if ({r} ∉ RUL(DT) ) then RUL(DT) = RUL(DT)∪{r}
   U=U\[RUL(DT)]
  end while
end

where [RUL(DT)] denotes the coverage of the decision system which is a set of decision 
rules such that for each object u∈U there is at least one rule supporting that object.

2.4. Evaluating the Quality of the Decision Rules

After computing the set of decision rules, the next step is to evaluate the quality of 
the obtained decision rules. There are many well-known measures that can be used 
to asses the significance of the rules [25]. A decision rule is statistically significant 
if the null hypothesis of purely random composition of the sets of genes recognized 
and supported by the rule may be rejected. Statistical significance of the rules 
confirms a non-random composition of gene clusters and encourages to extract bio-
logical conclusions from the obtained results. Below, a novel method of evaluating 
statistical significance of the decision rules, based on the conditional hypergeometic 
distribution, is derived.
 A common method to verify the statistical significance of the decision rule D 
involves comparison of the attributes (decision rules) in gene sets Gi and U \ Gi. For 
every decision rule D one can form a contingency table:

Table 1. Contingency table describing the application of the decision rule D to partition
   of the universe U into clusters Gi and U \ Gi

Decision rule D Gi U \ Gi

True NGT NUT

False NGF NUF

where NGT is the number of the genes that support the decision rule, NUT is the 
number of the genes that recognize the rule but do not support it, and NGF, NUT are 
the numbers of the genes that do not recognize decision rules in the decision class 
and in its complement respectively.
 Assuming genes in Gi and U \ Gi as having two different “colors”, the null 
hypothesis is stated as “the decision rule is color blind”. Under the null hypothesis 
the probability of obtaining specific configuration of NGT, NUT, NGF, NUF follows the 
hypergeometric distribution:

   , (6)
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which, in the case of the testing for the overrepresentation of NGT, leads to the fol-
lowing p-value of the hypergeometric test [26]:

   p N N N N p N k N k N NH GT UT GF UF GT UT GF UF
k

NUT

( , , , ) ( , , , )= + −
=

∑
1

. (7)

However, when multiattribute rules are applied to real data, it often happens, that the 
number of genes recognizing the rule (NGT + NUT) is very small. The extreme case 
of only one gene supporting and recognizing the rule (NUT = 0 and NGT = 1) is often 
encountered in the data. If the formula (7) is applied to such example, the very low 
p-value may be obtained, yet there is nothing extraordinary in the random choice of 
the single gene.
 For the purpose of obtaining the satisfactory statistical model for small number 
of genes recognizing the computed rules, the conditional probability that the decision 
rule D has already classified one gene as gene belonging to Gi is proposed here. This 
conditional probability is given by the expression:

   p N N N N p N N N Nc
GT UT GF UF GT UT GF UF( , , , ) ( , , , )= −1 , (8)

where p(.) is given by (6) and the p-value of the corresponding conditional hyper-
geometric test is:

   p N N N N p N k N k N NH
c

GT UT GF UF
c

GT UT GF UF
k

NUT

( , , , ) ( , , , )= + −
=

∑
1

.  (9)

When (8) − (9) is used to the case NUT = 0 and NGT = 1 one may obtain pH
c =1  which 

is in accordance with intuition.

3. Data and Results

The presented method was applied to the data set published in 1998 by Eisen et al. 
in [20]. The time−course expression profiles of the budding yeast Saccharomyces 
cerevisiae genes were measured during several biological experiments with use of 
the DNA microarrays. Eisen et al. applied the hierarchical clustering algorithm to 
the obtained DNA microarray results and successfully revealed the existence of the 
clusters including genes of the very similar biological functions. 
 To verify the method described in the previous sections, the data set includ-
ing top 10 gene clusters from Eisen et al. experiment was created. This data set 
included 274 genes described by the 142 different GO terms from the biological 
process ontology. The GO terms used for annotations were extracted from the Sac-
charomyces cerevisiae (SGD) GO annotations file that is available on the Gene 
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Ontology Consortium website (www.geneontology.org). In this paper the version 
from 11/03/2007, revision 1.1365 was used. The file included 6476 genes annotated 
with 3054 different GO terms, including 1326 different GO terms from biological 
process ontology.
 A decision table of 274 objects and 142 attributes where for each gene its attributes 
values were located at the intersections of the row corresponding to that gene and 
columns representing the attributes was created. Each attribute assumed the value 
“1” if the gene was described by the GO term corresponding to that attribute and “0” 
otherwise. Average number of the GO terms describing one gene was about four, 
so the created decision table was a sparse matrix. Then, the relative reduct which 
led to the reduction of the decision table to 62 attributes was computed. Using the 
sequential covering algorithm based on relative reduct, the 96 decision rules were 
obtained. For each decision rule its statistical significance was determined by comput-
ing conditional p-value using the formula (9). The obtained statistical significances 
of the rules were examined to reject these with the p-value greater than 0.1. Finally 
the set of 15 statistically significant decision rules covered 166 genes from the Eisen 
data set. 
 We compared the results obtained by our method to the results from two 
papers: the paper by Eisen et al. [20] where ten clusters were described by an 
expert and to the paper by Lee et al. [16] where significant biological features of 
gene clusters were obtained from the GO terms on the basis of the graph modeling 
algorithm. 
 The results of comparison are presented in Table 2. The method proposed in 
[16] by Lee et al., besides discovering GO terms for clusters, also leads to computing 
values that can be interpreted as measures of the quality of the obtained information 
(the AverPd measure). For the case of applying the proposed method the p-value of 
the statistical test based on conditional hypergeometric distribution (9) is reported. 
Table 2 also includes the level of the obtained GO terms given by the longest path 
from the root to that term – in other words, the level is the maximal number of edges 
between the root and that GO term plus one (+1). This parameter is related to the 
specificity of the discovered biological knowledge. The “biological process” term 
– the root of the biological process ontology assumes the level one.

4. Conclusions

The first conclusion is that the results obtained by the presented method are gener-
ally consistent with the results obtained by Lee et al. [16] and Eisen et al. [20]. The 
GO terms indicated by the computed rules are either exactly the same or close to 
the terms presented by other authors. The GO terms are close to each other if their 
distance on the GO DAG is small. 
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Table 2. Comparison of the GO terms obtained by our method with the description given by Eisen
   to its clusters and the best GO terms obtained by Lee presented in his paper

Cluster 
No.

Eisen description Lee GO terms (AverPd) (level) Go terms obtained by our method 
(conditional p-value) (level)

1 spindle body 
assembly and 
function

microtubule nucleation (72.0) 
(lev.8)

– microtubule nucleation, (0.0042) 
(lev.8)
– axial cellular bud site selection, 
(0.0042)(lev.10)
– protein ubiquitination (0.079)(lev.9)
– regulation of cyclin-dependent 
protein kinase activity AND S phase of 
mitotic cell cycle (0.079) (lev.8)

2 preoteasome ubiquitin-dependent protein 
catabolic process (0.0)(lev.10)

– ubiquitin-dependent protein catabo-
lic process (4e-34) (lev.10)

3 mRNA splicing mRNA splicing (88.0)(lev.9) – translation AND aerobic respiration 
(0.0996)(lev.6)
– mRNA cleavage (0.0996)(lev.8)

4 glycolysis glycolysis (47.0)(lev.10) – glycolysis (2.9e-10) (lev.10)

5 mitochondrial 
ribosome

protein biosynthesis(43.0)                            –

6 ATP synthesis ATP synthesis coupled proton 
transport (54.0)(lev.11)

– ATP synthesis coupled proton trans-
port(7.9e-11) (lev.11)

7 chromatin
structure

chromatin assembly or disas-
sembly (0.0)(lev.8)

– chromatin assembly or disassembly 
(2.9e-12) (lev.8)

8 ribosome and 
translation

protein biosynthesis (12.0) 
(lev.6)

– translation (3.9e-17)(lev.6)
– telomere maintenance(lev.8) AND 
translation(lev.6) (0.0336)
– ribosomal large subunit assembly 
and maintenance(lev.9) AND transla-
tion(lev.6) (0.0934)

9 DNA replication DNA replication initiation 
(22.0)(lev.8)

– S phase of mitotic cell cycle 
(1e-5)(lev.8)

10 tricarboxylic acid 
cycle and respi-
ration

metabolism (72.0)(lev.2) – tricarboxylic acid cycle (4e-5) 
(lev.8)
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 As already mentioned, the AverPd is a measure that allows to assess the cluster-
ing quality – if the value of AverPd is relatively small, the cluster can be regarded as 
biologically well-clustered in the GO space [16]. If the p-value of the obtained rules 
is compared with the AverPd measure proposed by Lee et al. in [16] the results are 
also similar. 
 One can notice that the presented method has some features that make the ob-
tained results more specific than those presented in [16] and [20]. This is seen by 
contemplating the GO levels in different columns of Table 2. The method proposed 
in this paper leads to the biggest values of GO levels, corresponding to the most 
specific term. 
 However, the most important property of the proposed method is that apart from 
selecting of the significant GO terms, which are included in the conditional part of 
the rule, the decision rule also indicates small groups of genes close related to each 
other. The genes that support the decision rules are the small sets of the genes that 
have very similar biological function. These small gene sets are easy to analyze. For 
example the cluster one consists of eleven genes related to the microtubules. One of 
the obtained decision rules:

IF “axial cellular bud site selection” = 1 THEN class is 1

is supported by three genes: BNR1, CDC10, CDC3 and from all genes composing the 
cluster only these three are involved into a process of bud neck emergence [27]. 
 The presented method may be used to indicate small groups of genes and char-
acterize more precisely the biological features of the gene cluster. These small groups 
of genes supporting the statistically significant decision rules can be presented to 
biologists as a specific genes that probably serve some important biological function 
and are more interesting than other genes in the analyzed cluster. 
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