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The objective of this study was to present an efficient algorithm that effectively aids the 
problem of searching for unique DNA sequences in the set of genes. The presented algo-
rithm is based on the Burrows-Wheeler Transform (BWT), a very fast and effective data 
compression algorithm. The developed algorithm exploits all the advantages offered by the 
BWT algorithm and the suffix array data structure. It allows obtaining a structure that is 
ideal for solving many problems related to the pattern-matching problem. This algorithm 
is applicable to the identification of yeast species as well as to many other computational 
molecular biology problems like searching for repetitive structures in genomic sequences, 
designing of DNA hybridization probes and many more.
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1. Introduction

The existence of unique DNA sequences allows scientists identifying signature 
sequences that can be used to detect individual species. Unique DNA sequences 
are particularly important for diagnosis of the common viruses and diseases. Using 
these sequences radically simplifies detection and identification of yeast species, as 
traditional methods can take up to several weeks [1]. Unique DNA sequences are 
also applied in design primers for polymerase chain reaction (PCR) [2]. 
 The identification of yeast species is conventionally based on morphological, 
physiological and biochemical characteristics such as their ability to utilize carbon and 
nitrogen compounds [3]. However, these identification methods are time-consuming 
and unsuitable for the detection of a mixture of organisms [1]. Hence, there is a need 
for methods based on the DNA sequence analysis. These methods make use of the 
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ribosomal DNA (rDNA) genes as a common target for the molecular identification 
of microorganisms.
 It has been shown that most of the yeast species can be identified using a sequence 
divergence in the 26S rDNA gene [4]. Particularly there are two regions within the 
26S rDNA gene (D1 and D2 domains), which are sufficient to deduce the relation-
ships between the species [5]. The D1/D2 variable domain sequences for almost all 
known yeast species are entirely sequenced. 
 The D1 and D2 domains are approximately located within the first 650 bases in 
the 26S rDNA gene. These two regions show high divergence among 26S rDNA genes 
and therefore are ideal to identify yeasts species [4]. There is another yeast identifica-
tion method that analyzes the internal transcribed spacer (ITS) region [3]. However, 
there are more sequence data for the D1/D2 regions of the 26S rDNA in the biological 
databases than for ITS data. In addition, the analysis of the D1/D2 domains has the 
advantage that it also facilitates phylogenetic analysis of the yeast [4].
 This paper presents the application of the Burrows-Wheeler Transform algorithm 
to the yeast identification problem based on the D1/D2 domain analysis. Furthermore, 
the algorithm for solving this problem is presented and its time complexity is dis-
cussed. The paper also presents other problems related to text strings, important due 
to their applications for searching and processing data in bioinformatics databases.

2. Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) is a compression algorithm that rearranges 
the input text by sorting operation [6]. The output text contains exactly the same ele-
ments but in a different order. The transformation does not compress the input text but 
makes it much amenable to compression with standard techniques. The transformation 
is reversible, that means, the original input text can be exactly reconstructed.
 The BWT is called “block-sorting” algorithm because it processes a block of 
input text as a single unit instead of processing the input sequentially. The main idea 
of the algorithm is to perform such a permutation of the input text elements that the 
same elements are grouped together. Therefore the resulted output text is much suit-
able to compression with other algorithms such as move-to-front coding [6]. 

2.1. BWT Algorithm

The algorithm takes an input of a string S of n characters and forms the n rotations 
of string S. Then the rotations are sorted in alphabetical order. The output string L is 
formed from the last characters of each of all the rotations. Because of the sorting 
we lose the information about the original string S. Therefore, the algorithm needs to 
compute the index I of the original string S in the sorted list of rotations. The output 
of the Burrows-Wheeler transform is the pair (L, I).
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 For the purpose of illustration suppose there is a string S = “MISSISSIPPI”. 
We form all the rotations of the string S (Fig. 1a) and then sort them alphabetically  
(Fig. 1b). The output string L containing the last characters from all the rotations in 
our example is L = “PSSMIPISSII”. Because the input string S occurs at position 4 
in the sorted list the index I = 4. The output of the transformation is the pair (L, I) = 
(“PSSMIPISSII”, 4).

Fig. 1. The BWT compression algorithm: a) rotations of the string “MISSISSIPPI”; b) rotations sorted
 alphabetically

 Having only the output of the Burrows-Wheeler Transform, it is possible to 
reconstruct the original input text. Cyclic rotations applied in the compression al-
gorithm ensure that the last character in each of the rotations immediately precedes 
the first character in this rotation. 
 The string L containing last characters of all the rotations is the output of the 
BWT algorithm. The string F containing the first characters of all the rotations can be 
simply computed by the decoder, by sorting the characters of the string L. Based on 
the observation that each character in L is followed by the corresponding character 
in F, one can calculate the vector T indicating one-to-one correspondence between 
the column L and F, such as F[i] = L[[T [i]] (Fig. 2). Decoding the output of our 
example gives us the vector T = [4, 6, 9, 10, 3, 0, 5, 1, 2, 7, 8]. 

Fig. 2. Example of the Burrows-Wheeler Transformation decompression algorithm for the string
“MISSISSIPPI”
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 Iterating the vector T we calculate the original input text S, in the way that for 
each i = 0, …, n – 1 the next character in the text is given by L[T[i]]. A simple algo-
rithm can do this:

   ∀ i : 0 ≤ i ≤ n – 1, S[i] = L[T i[x]] (1)

where T0[x] = T[I], Ti+1[x] = T[Ti[x]] and I is the index computed as the output from 
the BWT algorithm.
 Sorting all the rotations of the input text has the greatest effect on the overall 
BWT algorithm performance. The most popular sorting algorithm – quicksort can 
be applied to most input data. However, its worst-case performance is poor. There 
is a need to find a better way to calculate the BWT output [7]. The problem of rota-
tions’ sorting can be simply reduced to the problem of sorting of all the suffixes of 
the input text [6]. 
 To calculate the BWT output, firstly, one needs to form new text S’ by adding “$” 
at the end of the input text S, where the “$” is a new character that does not appear 
in the S. Then we can apply compression algorithm to the text S’ instead of S and 
sort only suffixes. This technique makes computing and keeping the index I of the 
original string S in the sorted list redundant. This index can be calculated anytime 
by simply finding the index of the character “$” in the output string.
 To achieve a better sorting performance Burrows and Wheeler suggested using 
a suffix tree. Building the suffix tree and then traversing it in the alphabetical order 
can solve the sorting problem. The suffix tree building time is proportional to the 
length of the input text, as well as, the time of traversing it [9]. There are also other 
data structures that can be effectively applied to the problem of computing the Bur-
rows-Wheeler Transform, e.g. suffix array [7].

2.2. Suffix Array

The additional advantage of the Burrows-Wheeler Transform decompression algo-
rithm is that it produces a list of all suffixes ST of the input text S sorted alphabetically. 
We can simply refer to such list of sorted suffixes ST by applying the decompression 
algorithm to the vector T for all indexes k within the range from 0 to n – 1 [8]. 
 This facilitates constructing a very simple algorithm that finds all the occur-
rences of a given pattern P in the input string S. If the pattern P occurs in S then all 
these occurrences would be grouped consecutively in the vector T. For example, the 
pattern P = “ISSI” occurs in the string S = “MISSISSIPPI” at adjacent positions 2 
and 3 of the array ST (Fig. 3).
 To search for the occurrences of the pattern P of length m we can perform a binary 
search over the array ST. First, we compare the pattern P with the suffix in the mid-
dle position of the ST (suffix ST[n/2]). If the pattern P is lexically less than the suffix, 
the pattern P must be in the first half of the array ST. Similarly, if the pattern P is 
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lexically greater than suffix, the pattern P must be in the second half of the array ST. 
Making such comparisons in a similar manner, one can compute the smallest index 
i and the largest index j of the array ST that the pattern P matches first m characters 
of suffix at position i and at position j respectively [9]. 

Fig. 3. Suffix array for the string “MISSISSIPPI”

 Using the binary searching over the vector T allows to find all of the occurrences 
of the pattern P in the string S in O(m log n) time. The real algorithm performance 
depends on how many prefixes of P occur in T. The O(m log n) bound is, in general, 
very pessimistic since it rarely happens that a specific comparison takes O(m) time. 
In the case of “random” strings, the binary search algorithm runs in O(m + log n) 
time on average [8].

3. Searching for Unique Substrings

The fact that all suffixes starting with the same prefix are located consecutively in 
the array ST it allows simply checking whether a given pattern P is a unique substring 
within the input string S. If we localized pattern’s position k in the vector T it’s enough 
to compare the pattern with adjoining suffixes ST[k–1] and ST[k+1]. If the pattern P 
is not the prefix of these suffixes then the pattern is a unique substring of string S.
 The naive algorithm to compute all unique substrings within the input string S 
is to apply above mechanism to all the suffixes of the string S by simply traversing 
the ST array from top to bottom. However, this method is simple to understand, its 
worst-case running time of O(n3) is unsatisfactory in most cases, especially in ap-
plication to biological sequences (DNA, RNA, and protein).  
 First improvement to the naive algorithm is based on the observation that during 
the top to bottom search the adjacent suffixes are compared twice. In the iteration 
k, the algorithm compares the suffix ST[k] with the previous suffix ST[k–1] and the 
next suffix ST[k+1]. In the next iteration k+1, the algorithm compares the suffix 
ST[k+1] with the previous suffix ST[k] and the next suffix ST[k+2]. To avoid redun-
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dant comparison of the suffixes ST[k–1] and ST[k], one can store the result of the first 
comparison ST[k] with ST[k+1] (mismatch position) in the iteration k and use it in 
the next iteration k+1. Although the number of the comparisons has been radically 
reduced, the resulted computational complexity of O(n2) is still disappointing. The 
algorithm can be further improved and the O(n2) worst-case bound can be reduced 
to O(n).
 The main goal of the further improvement is to eliminate the redundant character 
examinations. To achieve such acceleration a new value has to be introduced. Lcp(i, j) 
is the length of the longest common prefix of two suffixes specified at positions
i and j of the sorted list of suffixes ST[9]. To speed up the naive algorithm we need a 
vector of Lcp(i, i+1) values for each suffix ST[i], where 0 < i < n–1.  
 For the string S = “MISSISSIPPI” suffix ST[2] = “ISSIPPI”, suffix ST[3] =
“ISSISSIPPI”, so Lcp(2, 3) is 4. The complete Lcp vector for the string S is Lcp = [1, 
1, 4, 0, 0, 1, 0, 2, 1, 3, 0] (Fig. 4).

Fig. 4. The longest common prefix vector for the string “MISSISSIPPI”

 The Lcp values can be effectively used to accelerate the lexical comparisons of 
the suffixes. Since Lcp[i] characters of suffix ST[i] are the same as the Lcp[i] char-
acters of suffix ST[i+1], the lexical comparison of these two suffixes can begin from 
position Lcp[i] + 1 of the two strings, rather than starting from the first position. This 
allows to skip all redundant comparisons and run the searching unique substrings 
algorithm in linear time.
 The Lcp vector can be obtained in the preprocessing phase, before starting the 
searching algorithm or alternatively, can be calculated online during character exami-
nations by the searching unique substrings algorithm. In case of online construction 
of the vector Lcp we base on observation that the naive algorithm compare the same 
suffixes many times. After the comparison of two suffixes i and j is made we can 
store the Lcp(i, j) value in the Lcp[i] vector. Because algorithm compares different 
suffixes with random order (resulting from sorting of suffixes) such calculated Lcp(i, j) 
values may differ from Lcp(i, i+1) values. However those intermediate values would 
never be larger than real Lcp values because all suffixes are sorted lexicographically. 



101Searching for Unique DNA Sequences...

Therefore intermediate Lcp values can be effectively used to accelerate the naive 
algorithm.

4. Yeast Identification

From the algorithmic point of view the yeast identification problem based of the 
DNA sequences analysis can be defined in the following way. Given the set Z of 
the DNA sequences represented as strings over the alphabet ∑ = {A, C, G, T}, 
for every sequence α ∈ Z find the shortest continuous subsequence α[i..j] that 
uniquely distinguished α in Z. Each of the unique subsequences may have dif-
ferent length.
 J.-J. Wesselink et al. has presented an algorithm for identifying yeast species 
based on the D1/D2 domain analysis using the hashing technique [1]. I have applied 
my algorithm to the same set of the D1/D2 domain sequences (http://www2.cmp.uea.
ac.uk/~jjw/project/default.htm) and compared the effectiveness of the two methods. 
All sequences as used by J.-J. Wesselink et al. were downloaded from the nucleotides 
database using the Entrez retrieval system (http://www.ncbi.nlm.nih.gov/entrez).
 In the first step of the algorithm, the input string S for the Burrows-Wheeler 
Transform is created by the concatenation of all the 26S rDNA sequences separated 
by the character ‘#’ (the new character that does not appear in any sequence). Dur-
ing this concatenation, the auxiliary array C, containing starting indices in the string 
S for each of n DNA sequences is calculated. This auxiliary array C is necessary to 
discriminate suffixes from the different DNA sequences. Because each of all the 26S 
rDNA sequences has approximately the same length, the origin of a given suffix can 
be determined with only one call to the auxiliary array C.
 The calculation of the BWT for the string S can be easily accomplished based on 
the suffix array SA. From that, a vector T is calculated using the Burrows-Wheeler 
Transform decompression algorithm. Finally, the LCP vector is calculated using 
linear-time algorithm of T. Kasai et al.
 Then, the algorithm searching for unique substrings that compares values from 
the LCP vector is applied. For each k from 1 to n, the algorithm compares the value 
LCP[k] with the value LCP[h], where h is the index of the suffix ST[h] which is next 
to the suffix ST[k] and comes from a different DNA sequence than the suffix ST[k]. 
In most cases, those are simply successive indices. However, such a condition is 
necessary to ensure that the algorithm will not fail to find any substring which is 
unique within all the DNA sequences, not only within the string S. When comparing 
the LCP values, the algorithm makes use of the auxiliary array C and the suffix array 
SA to determine the origin DNA sequence and verify, if the likely unique substring 
does not overlap two different DNA sequences (does not contain ‘#’ character).
 The implementation of the algorithm is coded in Java programming language 
and run under Java Runtime Environment version 1.4.2. The hardware environment 
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used consisted of AMD Duron 700 MHz processor, 512MB RAM, and Microsoft 
Windows XP operation system was used.

5. Results

The result of the top to the bottom comparisons of all suffixes sorted lexicographi-
cally is the list of all unique subsequences that unambiguously identifying the yeast 
species. Algorithm runs in O(m) time on average, where m is the length of all DNA 
sequences.

     Table 1. Yeast species that can be identified with a unique sequence of up to length 6

Species name Accession No. Unique seq.
Ascoidea rubescens U76195 ttacat
Brettanomyces custersianus U76199 acgaat
Candida caseinolytica U70250 tatgaa
Candida friedrichii CFU45781 gtaaca
Candida gropengiesseri CGU45721 caaacg
Candida haemulonii CHU44812 caataa
Candida magnoliae CMU45722 cacaaa
Candida savonica CSU62307 ccataa
Candida spandovensis CSU62309 acgtta
Colacogloea peniophorae AF189898 cgctag
Metschnikowia AF017401 taacgc
Pichia capsulata U70178 attacg
Pichia naganishii U75724 acatta
Saccharomyces transvaalensis U68549 accata
Sporobolomyces sasicola AF177412 atatat
Williopsis californica U75957 actaat
Yarrowia lipolytica U40080 tccaca

 The result of searching the unique sequences shows that we are able to identify 
almost all of the examined yeast species (99.6%). The shortest unique sequences 
founded have length 6 bases (Table 1). With sequences of up to length 10 over 95% 
of yeast species could be identified. This proves that analysis of 26S rDNA gene is 
an effective way to identify yeast species.
 Histogram presented in Figure 5 shows the number of unique sequences of up to 
length 8 founded at each position of 26S rDNA gene. We can observe huge diversity 
in the D1/D2 domains. There are three regions that are much conserved as there are 
only few unique sequences found. These regions are located in the first 50 positions, 
between positions 200 and 350 and again over position 570. There are also few vari-
able regions like region around position 173.  
 J.-J. Wesselink et al. claim that theirs algorithm will outperform alternative tech-
niques because access to hash table is much faster than traversing the suffix tree for 
example [1]. Performance comparison of the algorithms doesn’t confirm that thesis. 
Although access to hashing table is really fast, the performance of hashing function 
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is not such satisfactory especially for longer sequences. With the algorithm based 
on the Burrows-Wheeler Transform we are able to compute all unique sequences in 
linear time. Having Lcp values calculated we can determine whether given sequence 
is unique with just single comparison. We only need to find its position in the suffix 
array that can be easily done using binary searching for example. 

Fig. 5. Histogram presenting the number of unique sequences of up to length 8 founded at each 
position

6. Conclusion

This paper has presented the approach to the problem of searching unique sequences 
employing the Burrows-Wheeler Transform. In addition to its good compression 
advantages the BWT provides structures that are ideal for such searching problems. 
In particular, all algorithms based on the sorted list of suffixes can derive benefits 
from the BWT, especially in the area of computational biology.
 J.-J. Wesselink et al. presented an algorithm for determining of unique defining 
sequences based on the method of hashing [1]. I have reanalyzed data and algorithm 
presented by J.-J. Wesselink et al. and compared the results of using their software to 
the methods discussed here. I have found algorithm based on the Burrows-Wheeler 
Transform, superior over the hashing technique proposed by J.-J. Wesselink et al. 
Additional advantage of my algorithm is that for some reason the top to bottom 
comparison of suffixes can by easily limited to the selected area. Furthermore, the 
algorithm can be stopped at any time (e.g. when interesting sequence is founded) 
and intermediate values can be used.
 The sorted list of suffixes can be also effectively applied to solve more compli-
cated problems like computing repetitive structures in the molecular strings (DNA, 
RNA, and protein). Repetitive structures play incredibly important role in the bio-
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logical strings. There are many researches concerning repeated structures, theirs 
function and origin. Study of such structures requires extensive algorithm support. 
Finding repetitive structures in the molecular strings is, however, out of scope of this 
paper.
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