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PREFACE 
 

 

The tenth International Seminar "Statistics and Clinical Practice" was held between             

15 -18 May 2016 in the Institute of Biocybernetics and Biomedical Engineering, Polish 

Academy of Sciences, Warsaw, Poland. 

 

The Seminars "Statistics and Clinical Practice" are organised since 1994 in Warsaw in the 

framework of the International Centre of Biocybernetics (ICB). Up to now ten seminars were 

carried out in: 

 

1994, 1996, 1998, 2000, 2002, 2005, 2008, 2011, 2014 and 2016 year. 

 

The below topics were addressed during the tenth Seminar: 

 

 prognostic models selection  

 exploratory analysis of  big biomedical data sets  

 data mining methods in bioinformatics  

 inclusion of genomic data in biostatistical modeling  

 new models in survival analysis 

 clinical epidemiology 

 study designs for individualized medicine 

 

 

The ICB Seminars "Statistics and Clinical Practice" have become a tradition as a meeting 

space for statisticians from various countries, dealing with problems related to medicine. Both 

scientific and didactic goals form a part of the Conference framework. The Seminar provides 

an opportunity for professional discussions among biostatisticians, while medical doctors are 

offered an opportunity to discuss statistical problems with leading experts in the field. The 

didactic session for medical doctors were organized by the Polish National Group of the 

International Society for Clinical Biostatistics (ISBC).  

 

                                                                                               Leon Bobrowski 

 

Warsaw,  May 2016 
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Abstract 

We address the issue of cluster detection by means of spatial scan statistics methods. These quite 

recent methods provide high power for detecting significant spatial clusters. Firstly, we explain 

the principle of spatial scan statistics and the underlying mathematical model. Secondly, we 

perform an application of these methods in the search of spatial clusters of Crohn’s disease in 

northern France, during the period from 1990 to 2011, using the data provided by EPIMAD 

registry. The application of spatial scan statistics allowed to highlight 8 significant spatial 

clusters: 4 clusters of high-incidence and 4 clusters of low-incidence. 

Keywords:  Crohn’s disease, Cluster detection, Spatial Scan Statistics  

 

 

I. INTRODUCTION 

 

The detection of clusters of events is an area of statistics that is particularly extensive in 

recent decades. First, the scientific community has worked to develop methods in the one-

dimensional framework (e.g. time) and, subsequently extended these methods to the 

multidimensional case, including two-dimensional (space). Among all the events cluster 

detection methods, three types of methods can be distinguished. The first concerns global tests 

that detect a global clustering, without locating any clusters. The second type corresponds to 

the focused tests that are used when an a priori knowledge allows to define a source point 

(date or spatial location) and test the aggregation of events around it. The last type includes 

the cluster detection tests that allow localization, without a priori knowledge, of clusters and 

test their statistical significance. It is in this latter type of methods that spatial scan statistics 

(SSS) are embedded. These methods, originally proposed by [1, 2], proved to be very 

powerful [3, 4] as part of the objective detection of events spatial clusters and test their 

statistical significance. In other words, these methods allow the detection of spatial areas 

where the probability of an event is abnormally high (or low). In medical research, SSS were 

applied to many fields such as oncology [5-7], cardiology [8, 9], infectious diseases [10, 11] 

or gastroenterology [12-14]. 

 

In this paper, we explain the principle of the SSS and present the application of these 

methods in the detection of spatial clusters of Crohn’s Disease (CD). The paper is organized 

as follows. In Section 2, we present the principle of SSS and the underlying mathematical 

model. In section 3, we present the results of the application of SSS to CD epidemiology in 

northern France, through the data from the EPIMAD Registry. In Section 4, we propose a 

discussion of the results. Section 5 will conclude the paper. 
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II. METHODOLOGY 

Spatial scan statistics 

Consider a studied region modeled by a random process  indexed by 

a fixed discrete spatial set . For instance, each site , 

may correspond to the centroid of a municipality and  corresponds to the observed number 

of events. In case of count data, the random variables  are often considered as Poisson 

distributed with parameter  where  is the probability of apparition of an event over the 

whole studied area and  is the underlying population related to the location . Thus, for 

each  we can define  and ,  being Poisson 

distributed with parameter . 

The aim of the the SSS is to test the null hypothesis  of absence of cluster against an 

alternative hypothesis  supporting the existence of at least one area  in which the 

probability of apparition of an event, p, is higher than in the rest of the studied area, q. The 

two hypotheses are summarized in the following equation: 

 

 
 

The SSS are defined by a two-step process: cluster detection and statistical inference. 

During the detection step, the method uses a circular scanning window   of variable size 

which moves across the studied area, using as centre the centroid of each spatial unit. At each 

position, the radius of the circular window varies from 0 to a maximum so that the window 

never contains more than 50% of the total underlying population. Thus, the detection step 

yields to an important collection  of potential clusters. To each potential cluster is associated 

a likelihood ratio (LR) defined by 

 
 

where  and  are respectively the likelihood functions under  and . The 

potential cluster that maximizes the LR, , is called the Most Likely Cluster (MLC). The LR 

related to  is the test statistic   used to test  against : 

 

. 

The detection step yields to the identification of the MLC and the test based on  

allows to test the significance of the MLC. However, the distribution of  under  has no 

analytical form. Thus, a Monte-Carlo hypothesis testing procedure is used [15].  

 

Isotonic version of spatial scan statistics 

Instead of considering the risk as constant in a cluster, the isotonic spatial scan 

statistics (ISSS) consider the risk as a decreasing function from the center of the cluster [16]. 

During the detection step, a likelihood function is calculated and it models the potential 

cluster using an isotonic regression function with successively decreasing risk with increasing 
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distance from the cluster center. Actually, for a given window of radius d, the risk is modeled 

as a non-increasing function r(d) of the distance of the centroid with multiple locations where 

the function takes a step down.  

The risk function is fitted by means of an isotonic regression and there is no a priori 

assumption about the number of steps. It is linked to the isotonic regression function chosen, 

among all possible non-increasing functions, thanks to maximum likelihood method.  

Each significant isotonic cluster is assigned a global relative risk (RR) which is defined as the 

risk in the cluster compared to the rest of the studied area. Moreover, each step of a cluster is 

assigned a RR which is defined as the risk in the cluster step compared to the rest of studied 

area outside the cluster. 

 

Application to the epidemiology of CD  

 

This study was conducted in northern France, which has a surface of 24,862 km
2
 

including both rural industrial and urban regions. It has an average total population of 

5,858,921 inhabitants, which corresponds to approximately 9.4% of the French population. 

Northern France is divided into four large administrative units: Nord, Pas-de-Calais, Somme 

and Seine-Maritime. These large administrative units can be further divided into 273 cantons 

(a French small administrative area). Canton centroid, as defined by the geographical center 

(longitude and latitude), was used for our statistical analysis. 

Epidemiological data were extracted from the EPIMAD registry of inflammatory 

bowel disease in northern France. The methodology of EPIMAD registry has been previously 

described in details [17]. For the purpose of this study, we considered all CD incident cases 

from 1990 to 2011 (n=8,970). Each CD case was attributed to a canton using the zip code of 

residence of the patient. 

ISSS adjusted for age and gender have been used to highlight high and/or low-incidence 

clusters of CD.  

 

III. RESULTS 

 

From 1990 to 2011, the mean crude annual CD incidence rate was 7.1/10
5
 inhabitants in 

the region covered by the EPIMAD registry. 

The age and gender adjusted ISSS highlighted eight significant clusters of CD incidence, 

which the spatial locations and characteristics are described in Fig. 1. Among these clusters, 

four cluster of high-incidence of CD and four clusters of low-incidence of CD can be 

distinguished. In the clusters of high-incidence, the global RR varies from 1.27 to 1.46. The 

RR associated to the first step of each high-incidence cluster varies from 1.64 to 1.89. Among 

the low-incidence cluster, the global RR varies from 0.69 to 0.77 and the RR associated to the 

first step of each cluster varies from 0.14 to 0.65. 
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Fig. 1. Relative risks of Crohn’s disease (CD) in northern France during the period from 1990 to 2011. 

Spatial clusters detected by isotonic spatial scan statistics adjusted for age and gender. 

 

IV. DISCUSSION 

The application of ISSS to CD epidemiology yields to the highlighting of a strong 

geographical heterogeneity of CD incidence by means of the identification of 8 clusters using 

ISSS. Among these latters, 4 clusters of high-incidence have been identified, which are 

characterized by urban and peri-urban area. Simultaneous use of powerful methods and high 

number of CD cases from EPIMAD registry ensure the robustness of theses ecological results. 

Moreover, these latters pave the way to the evaluation of environmental causes of the disease 

by crossing the cluster data with pollution data.  

 

V. CONCLUSION 

The SSS are powerful methods for cluster detection without pre-selection bias. 

Moreover, the isotonic version of SSS is more useful in an epidemiological point of view 

when considering the risk as a decreasing function from the cluster center. When seeking for 

the causes of a disease and dealing with large clusters, the ISSS provide an “epicenter” of the 

cluster that allows the physicians to focus their etiological researches.  
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Abstract 

Categorical functional data represented by paths of a stochastic jump process with 

continuous time are considered for clustering. For Markov models we propose an EM 

algorithm to estimate a mixture of Markov processes. A simulation study as well as 

a real application on  medical discharge letters will be presented. 

Keywords: Categorical functional data, clustering, EM algorithm 

 

I. INTRODUCTION 

 

Let  S ={s1,..., sm}, m  > 1,  be a set of m states and X = {Xt : t > 0} be a S-valued family of 

categorical random variables. A path of X is a sequence of states sij and times points ti of 

transitions from one state to another one : {(si1, t1), (si2, t2), … }, with sij �S and ti > 0.We 

call the sample paths of the process X categorical functional data. The Figure 1 presents 

graphically an example of categorical functional data. 

 

 
 

Fig1. Categorical functional data representation.  

 

In this work we present a model-based methodology of clustering categorical functional data.  

Instead of the classical setting considering a fixed length of the paths of X, i.e. the process is 

observed over a fixed length of time T, T>0, we consider that the process X has an absorbing 

state and thus, we allow sample paths of different lengths. In the Markovian framework, based 

on the likelihood function, we derive an EM algorithm for clustering categorical functional 

data. A simulation study and an application on clustering medical discharge letters according 

to their status of dictating, type-writing and delivery to the end-user (patient or medicine) are 

presented. 
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II. METHODOLOGY 

 

It is supposed that the n paths come from K different Markov processes. Given that the path i 

comes from cluster k the probability density function of the path i is written p(xi;θk) where θk 

are the parameters describing the process in cluster k. 

Let first introduce some notations:  

 S = {1, 2, ...m} the state space, m being an absorbing state.  

 n  is the number of observed paths of X 

 di is the length of the i-th path (in terms of state changes) 

 eijh equals to 1 if the j-th state from the i-th path is h, 0 otherwise 

 eij  = (eij1, eij2, …, eijd_i) the binary codding of the j-th state for the path I 

 sij = the time spent in the j-th state for the path I 

 xi = (ei0, si1 ei2, si2 …, eid_i) is the data from the path I 

 x = (xi , xi , …., xn) the whole dataset 

By the chain rule we have 

 

where θk are the parameters describing the process in cluster k. 

Four assumptions are made: 

Assumption 1 : The distribution of (sij,eij) is independent of the past given ei(j−1). 

Assumption 2 : The distribution of sij is independent of  eij given ei(j−1). 

Assumption 3 : The distribution of sij given ei(j−1) is an exponential one. 

Assumption 4 :The distribution of the initial state does not depends on the cluster. 

Consequently, p(xi;θk) can be written as  

 

The assumptions 1, 2 and 3 allow to deal with a Markov process and assumption 4 is made to 

not involve directly the initial state in the clustering process. The assumptions 2 and 3 can be 

easily weakened, in this case we would work in a semi-Markov framework. Assumption 4 can 

also be easily weakened by making the initial state depend on the cluster, but perhaps it would 

give a too large weight on it in the clustering process. 
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The parameters θk are decomposed in two parts, on the one hand the parameters governing 

the transitions probabilities αk and on the other hand the parameters λk governing the sojourn 

times which follow an exponential distributions. Thus,  

– αkhh' is the transition probability from state h to h' in the cluster k 

–  αk is the matrix (αkhh', 1 ≤ h,h' ≤ m) 

– λkh is the parameter of the sojourn time in state h for the cluster k 

– λk  = (λk1, λk2, …, λk(m-1)) 

– θk = (αk, λk)  

Under assumptions 1- 4,  simple calculations yield to: 

 

Since the class membership is unknown, the probability density function for the path i can be 

written as a mixture in the following way. Let  π=(π1,...,πK) be the prior weights for the K 

clusters and denote by θ=(π,θ1,...,θK). Then, 

 

The EM algorithm. 

The aims is now to estimate the parameters of the model. This can be performed by maximum 

likelihood. Making the assumption that the path are independent and identically distributed, 

the expression of the log-likelihood, denoted by l(θ; x) is 

 

The direct maximisation of l(θ;x) with respect to θ is hard to perform due to the logarithm of 

the sum. We propose to use the EM algorithm in order to perform the parameters estimation 

and thus, giving for each path the posterior probabilities to belongs to some cluster.  

 

III. RESULTS 

We apply the clustering algorithm to the medical discharge letters. Data come from the Saint 

Philibert Hospital (Northern France). We have a set of 443 325 letters for which we know, 

at all moment its status (states): 

1. the doctor is dictating the letter 

2. the letter is "waiting" to be type-writing by an assistant (queue) 

3. the letter is type-writing by the assistant 

4. the letter is "waiting" for doctor validation (queue) 
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5. the letter is in validation process by the doctor 

6. the letter is "waiting" to be affected to an assistant (queue) 

7. the letter is treated by the assistant 

8. the letter is sent to the patient (end). 

A summary description of the data is presented in Table 2 and Figure 3. 

 

Table 2. Transitions between states 

 

 

Fig. 3. Distribution of the lengths of paths (time to go in state 8) 

We performed the EM clustering algorithm with K = 4 clusters. The cluster distributions and 

the average time for each state within clusters are presented in Table 4 and Figure 5. 
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Table 4. Clusters distribution 

 

Fig. 5. Cluster profile: state-time distribution 

Clearly, the cluster 1 contains letters for which dictating is the state which take the most of 

time until de delivery. The cluster 2 is a cluster where the state 3 and 4 are important states 

(assistants type-writing and validation from the doctor). Clusters 3 and 4 are characterized by 

an important time spent is state 2. 

 

Acknowledgements 

The present study was supported by a grant from ANR, France. 

This work was performed within the Project CLINMINE sponsored by the ANR, France. 

 

 

 

 



19 

 

USING A BIVARIATE SCAN STATISTICS FOR DETECTING DISEASE 
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Abstract 

In this paper we address the problem of detecting disease clusters using a bivariate scan statistics. 

We define it as the maximum number of events in a scan window and give an algorithm for 

determining its empirical distribution. We apply it for detecting clusters in children leukemia by 

assuming an underlying uniform bivariate Poisson process and simulate the distribution of the 

bivariate scan statistics based on the population and the number of ill cases. We compare the 

described method to other methods such as flexible spatial scan statistic and circular scan statistic.  

Keywords: scan statistics, cluster detection. 

 

I. INTRODUCTION 

 

Scan statistics [1-6] addresses the problem of unusual event detection, trying to answer in 

a statistical manner weather is natural or not to observe large or small number of events 

grouped in a region. We define the scan statistic as the maximum number of events in 

a window of fixed dimensions and propose an algorithm for obtaining its empirical 

distribution for the case where events follow a bivariate uniform Poisson distribution. The 

distribution of the scan statistics is used in many application domains such as epidemiology, 

computer vision, reliability theory. We use it here for detecting disease clusters applied to 

children leukemia. We compare our results to other cluster detection methods such as the 

flexible spatial scan statistic of [8] and the scan statistic using a circular window of [4]. 

 

II. METHODOLOGY 

 

In this section we define the scan statistics, present an algorithm for obtaining its empirical 

distribution and compare the simulation results to [1] and [6].  

 

Definition 1. Let X1, X2, …, XN be random points in the interval [0, T]. We define the one 

dimensional scan statistic Sw as the maximum number of points which are found in an interval 

of length w in [0, T]. The interval of length w is called the scan window.  

 

Of great interest in the literature is the case where the random variables X1, X2, …, XN are 

a trajectory of N points from a Poisson process{Xt, t 0}. We define next the bivariate scan 

statistic when the random variables X1, X2, …, XN are a selection of a uniform bivariate 

Poisson process. We give first the definition of the bivariate Poisson process [7].  

 

Definition 2. A process consisting of randomly occurring points in the plane is said 

to constitute a uniform bivariate Poisson process having rate ,  > 0, if  
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i) the number of points occurring in any given region of area A is Poisson 

distributed with mean  A; 

ii) the number of points occurring in disjoint regions are independent.  

 

Definition 3. Let I = [0, T]   [0, L] and let u, v > 0 two positive numbers such that 0 < u < T 

<  , 0 < v < L <  , u and v define the size of the bivariate scan window. Assume that in the 

interval I there are N points X1, X2, …, XN which constitutes the trajectory of uniform 

bivariate Poisson process {Xt, t 0} with intensity λ. We denote with νt,s = νt,s(u, v) the number 

of points which fall in the rectangular scan window [t, t + u]   [s, s + v]. We define the 

bivariate scan statistic S as  

S = S(u,v, λ, T, L) = 
vLsuTt  0,0

max  νt,s.    (1.1) 

the maximum number of points νt,s(u, v) over all rectangular scan windows [t, t + u]   [s, s + 

v] from I. 

 

We are interested in computing the distribution of the scan statistic denoted by: 

 

P(S((u, v), λ, T, L) ≥ k) = P(u,v, λ,T,L,k).   (1.2) 

 

 The probability distribution (1.2) is hard to compute. Therefore a simulation procedure is one 

way to estimate it. In [6] is introduced a method for estimating the probability distribution 

(1.2) using the simulation of conditional scan statistic and the relationship between scan 

statistic and conditional scan statistic. For estimating the probability distribution given in (1.2) 

we use the following simulation algorithm. 

 

Algorithm 1 

Input: T, L, m, u, v, λ; 

Step 1.  For j = 1, m do 

1.1 simulate a bivariate Poisson process {X1, X2, …, } on [0, T]   [0, L]; 

1.3 determine S = S((u,v,λ,T,L,k) and denote Kj = S; 

Step 2.  Determine the empirical distribution of the sample K1,…, Km as follows: 

2.1 Determine the order statistics K(1) < K(2) < … < K(r), r < m  

2.2 Determine the frequencies fi, 1 ≤ i ≤ r, fi = number of sampling values K’s equal to 

K(i), 



r

i

i mf
1

. 

2.3 Determine the relative frequencies (sampling probabilities)
m

f i

i  . 

Output: P(S((u, v), λ, T, L) ≥ k) = fi

i,Ki >=k

å . 

 

Algorithm 1 takes as inputs the dimension T and L of the interval I, the number m of the 

simulations employed, the dimension u and v of the scan statistic window and the intensity λ 

of the bivariate Poisson process. The bivariate Poisson process is simulated at step 1.1. Step 
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1.2 computes the bivariate scan statistic S. Based on the m simulations of the scan statistic S, 

Step 2 builds–up a frequency distribution, i.e. a histogram of the scan statistics. If m is large 

enough, then the sampling distribution of K1, K2, …, Km converges to (1.2) (according to the 

consistency property of the estimates ).  

 

Step 1.1 in Algorithm 1 is implemented by Algorithm 2 which simulates [7] an uniform 

bivariate Poisson process with intensity λ  on the interval [0, T]   [0, L].  

 

Algorithm 2 

Input: T, L, λ; 

Step 1.  Simulate 0 < T1 < T2 < … < Tk a uniform one dimensional Poisson process   with rate 

λ, Tk <= T, i.e. k is random variable. 

1.1 Initialize t = 0, k =0; 

1.2  Repeat 

1.2.1 Generate E ~ Exp(1); 

1.2.2 Take k = k+1, t = t+ , Tk = . 

       until t T. 

Step 2.  Generate L1, L2, …, Lk uniform on [0, L]; 

Output (T1,L1), (T2,L2), …, (Tk,Lk). 

 

The step 1.2 in Algorithm 1, determining the value of the bivariate scan statistic S = 

S((u,v,λ,T,L,k) is implemented by Algorithm 3, described below. 

 

Algorithm 3 

Input: (T1,L1), (T2,L2), …, (TN,LN), T, L, u, v. 

Initialize S = 0.  

Step 1: for i = 1 to N 

1.1 Put a scan window of size u v in point (Ti,Li) that defines the rectangular Ri = 

[Ti, Ti + u]  [Li, Li + v]. 

1.2 Count the number of points ni that are contained in Ri. 

1.3 S = max(S,ni). 

Output: S. 

 

In practice, the calculation employed in step 1.1 can be reduced by running a scanning 

window mechanism which reuses some computations. Also, due to computations issues, the 

points (T1,L1), (T2,L2), …, (Tk,Lk). are generated with integer coordinates. This can be 

achieved by scaling the initial generated points and also scaling the window sizes u and v.  

 

λ = 0.01, T = L = 10, u = v = 1           λ = 0.01, T = 200, L = 100, u = v = 1, 

K P(S<=k) [6] [1] 

1 0.9818 0.9826 0.9959 

2 1.0000 0.9998 0.9999 

 

K P(S<=k) [6] [1] 

2 0.9720 0.9713 0.9808 

3 1.0000 0.9998 0.9999 
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λ = 0.5, T = 10, L = 10, u = v = 1,     λ = 0.5, T = 10, L = 10, u = v = 1 

K P(S<=k) [6] [1] 

2 0.9859 0.9854 0.9905 

3 0.9998 0.9996 0.9997 

4 1.0000 0.9999 0.9999 

 

 

K P(S<=k) [6] [1] 

4 0.7865 0.7938 0.8343 

5 0.9692 0.9707 0.9759 

6 0.9968 0.9970 0.9974 

7 0.9999 0.9997 0.9997 

Table 1. Simulation results of the scan statistic S = S(u, v, λ, T, L) based on m = 10000 simulations 

and different values for parameters u, v, λ, T, L.  

 

 

III. RESULTS 

We present in Table 1 simulations results using Algorithm 1 for assessing the empirical 

distribution of the scan statistics S(u, v, λ, T, L, k) based on m = 10000 simulations, comparing 

our results in column 2 with the results obtained by [6] and [1]. Table 1 shows similar results of 

our method when compared to [6] and [1]. We used it next for detection of disease clusters. 

We apply our method for identifying the potential disease clusters in the region of Nord Pas de 

Calais, north of France. In this region, from 2001 and 2003, there were registered 497 cases of 

children leukemia among a population of 573500 people. The region is devised in two 

departments, containing a total of 156 cantons. Among these, only 123 cantons exhibit ill cases. 

As some of these cantons have the same administrative center in the end it results 96 cantons with 

different administrative centers with ill cases. The canton with the highest disease incidence is 

Lievin Sud, with 9 ill cases registered at a population of 1600 people. The question is weather this 

canton is a potential disease cluster, with the number of ill cases higher than normal values. We 

answer this question using our method. We assume an underlying uniform bivariate Poisson 

process of the ill cases on the entire region with intensity λ. Denoting with P the population size 

and q the number of ill cases, we obtain λ=  = 0,000866. We model the population as a square of 

length T = L =  = 757.3. As we want to decide if the number of ill cases registered in region 

Lievin Sud, 9 ill cases over 1600 population, is abnormal we take the scanning window with 

dimension u = v =   = 40 and compute the distribution of the scan statistic 

S(40,40,0.000866,757.3,757.3). In particular we are interest what is the probability that this 

statistic is higher or equal than 9. Using Algorithm 1 we obtain: 

                                          P(S(40,40,0.000866,757.3,757.3)  9) = 0.178 

which shows that the 9 ill cases from Lievin Sud do not constitute an abnormal event. We decide 

that Lievin Sud is not a disease cluster. 
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Figure 1. The map of Nord Pas de Calais devised in cantons. The blue colored cantons have 

a higher disease incidence that the red colored cantons.  

IV. COMPARISON TO OTHER METHODS 

We compare our method to the circular scan statistics method of [4] and to the flexible shaped 

spatial scan statistics of [8]. The method of [4] detects clusters using a circular scan statistic 

window centered in an administrative center of a canton and using variable radii for the scan 

window. All cantons whose administrative center is included in the circular windows are added. 

This procedure results in small deviations from the circular shape of a potential cluster. While the 

method of [4] can detect only clusters with shape almost circular, the method of [8] overcomes 

this drawback by allowing a flexible shape scan window. A scan window is build by starting with 

an administrative center and including in the window the corresponding region. At each step, the 

method allows adding adjacent regions to the ones already included up to a maximum number of 

C regions. Consequently, this method could potential identify disease clusters with irregular shape, such as 

the clusters along rivers. Both methods detect potential disease cluster regions as all the regions 

in a scan window Z based on the likelihood ratio: 
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where n(Z) is the number of ill cases in window Z, ξ( Z) is the expected number of ill cases under 

the null hypothesis H0 of equal means for all windows Z, Z
C
 denotes the set of regions not 

included in Z, I is the indicator function. The distribution of the statistics in (1.3) under the null 

hypothesis H0 can be computed using Monte Carlo simulations. The  
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 Flexible scan window [8] Circular scan window [4] 

C=15 Log likelihood ratio = 9.96 

p-value = 0.016 

third cluster found 

Log likelihood ratio = 9.96 

p-value = 0.002 

second cluster found 

C=20 Log likelihood ratio = 9.96 

p-value = 0.051 

third cluster found 

Log likelihood ratio = 9.96 

p-value = 0.002 

second cluster found 

Table 2. Results for methods [4] and [8]. 

 

window Z
*
 with the highest value given in (1.3) defines the most probable cluster. We obtained 

results for both methods using the Flex – Scan software [8]. Is important to mention that this 

software uses the Poisson modeling of the underlying process of ill cases. To obtain the clusters 

we need the coordinates of the administrative center of each canton, the adjacent matrix for all 

cantons, the number of ill cases and the total population of each canton. Table 2 shows the log 

likelihood ratios, the corresponding p-values and the rank of the log likelihood ratio among all 

other cluster found for the Lievin region when taking the maximum C numbers of regions in 

a cluster to be 15 or 20. Both methods [4] and [8] suggests that Lievin is a disease cluster, with the 

method [4] having a very small p-value of 0.002 indicating a high confidence for this decision. 

 

V. CONCLUSION 

In this paper we have used a bivariate scan statistics for cluster detection in children leukemia. We 

compared this method with the circular [4] and flexible scan window [8] methods for deciding 

whether the region Lievin, the region with the highest disease incidence, is a potential disease 

cluster.  
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Abstract 

Biometric exploits discriminable physiological characteristics to identify a legitimate individual. 

Among the present biometric traits, iris is found to be the most reliable and accurate because 

iris is distinct and intrinsic organ, which is externally visible and yet secured one.  

This work presents a new method for iris indexing and recognition. Given a query iris image, the 

goal of indexing is to identify and retrieve a small subset of candidate irises from the database in 

order to determine a possible match. This can significantly improve the response time of iris 

recognition systems operating in the identification mode. 

Our contribution consists in applying an Adaptive Resonance Architectures neural network 

based on a Mahalanobis distance (ARTMAH) to find small clusters of irises and adapt this 

network to a supervised learning strategies in order to identify the genuine iris. 

The performance of the proposed algorithms is validated and compared with other algorithms 

using ND-CrossSensor-Iris-2013 database. Experiments show a substantial decrease of the false 

acceptance and false rejection rates (FAR and FRR) in the recognition of iris images. 

Keywords: Adaptive Resonance Theory networks, cluster analysis, iris recognition, 

Mahalanobis distance, supervised learning 

 

 

I. INTRODUCTION 

Amongst a variety of biometric traits, iris based recognition systems are more valued due to 

its distinct pattern. Iris patterns are believed to be unique due to its rich, distinctive and 

complex pattern of crypts, furrows, arching, collarets and pigment spots. It is very precise 

and most stable personal identification biometric. The two iris patterns are not similar or 

identical even if those of identical twins, even between the same individuals left and right 

eye [1].  

Iris recognition process is quite complex and is divided into three main steps: (1) pre-

processing, (2) feature extraction and (3) recognition. The original contribution of the present 

paper is the learning mechanism corresponding to the recognition step. The learning 

mechanism is a modified version of an Adaptive Resonance Architectures (ART) network 

that is adaptive enough in order to accept the iris templates given in a random order for 

training. This modified unsupervised neural network will create and store the digital identities 

of the enrolled users, identities that are further used to test the recognition and identification 

process. ART networks are able of stable categorization of an arbitrary sequence of unlabeled 

input patterns in real time. They are capable of continuous training with non-stationary inputs. 

ART networks also solve the stability-plasticity dilemma; namely, they let the network to 

adapt preventing the current inputs from destroying past training. 

This paper is organized into the following sections. Section II presents a detailed discussion 

on iris classification using ARTMAH classifier. Comparative analysis of experimental 

results is reported in Section III. Section IV concludes the paper. 
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II. METHODLOGY 

Multiple approaches of Machine Learning (ML) techniques, both supervised and 

unsupervised, have been made in biometrics over the last several years. Regarding supervised 

learning methods, there are different types of neural  network classifier repor ted  such 

as: probabilistic neural network (PNN), multilayer perceptron (MLP) neural network, radial 

basis function (RBF) neural network. Regarding unsupervised learning methods, the most 

frequently reported results are for k-means (which, for instance, in [2] is used as an iris image 

classifier) and for Self-Organizing Maps (SOM) – [3]. Narrowing down the list of related 

works to the ones utilizing ART networks, is seen that these neural networks are applied in 

biometrics mainly in handwritten signature verification approaches, in speaker recognition 

systems, and in palm vein recognition. In [4] was proposed an iris biometric system based on 

a Fuzzy ART, tested on CASIA iris image database. The authors performed several tests, 

using different values for the vigilance parameter, and reported the FAR and FRR values. 

Back propagation network is very powerful in the sense that it can simulate any continuous 

function given a certain number of hidden neurons and a certain forms of activation functions. 

But, training a back propagation network is quite time consuming. It takes thousands of 

epochs for the network to reach the equilibrium and it is not guaranteed that it can always 

land at the global minimum. Once a back propagation is trained, the number of hidden 

neurons and the weights are fixed. The network cannot learn from new patterns unless the 

network is re-trained. Thus we consider the back propagation networks don’t have plasticity. 

Assuming that the number of hidden neurons can be kept constant, the plasticity problem can 

be solved by retraining the network on the new patterns using on-line learning rule. However, 

it will cause the network to forget about old knowledge rapidly. We say that such algorithm is 

not stable. The contradiction between plasticity and stability phenomenon is called 

plasticity/stability dilemma [5]. 

Adaptive Resonance Theory (ART) is a type of neural network designed by Grossberg in 

1976 [6] to solve plasticity /stability dilemma. The most important ART networks are: ART-

2, used to cluster analog data, ARTMAP, a supervised learning mechanism for binary data, 

and Fuzzy ART, a supervised learning algorithm for analog data.  

The typical ART network is a recurrent unsupervised neural network.  

The basic architecture of the ART network consists of a layer of linear perceptrons 

representing prototype vectors whose outputs are acted on by a winner-take-all network. This 

architecture differs from a competitive net in that the linear prototype units are allocated 

dynamically, as needed, in response to novel input vectors. Once a prototype unit is allocated, 

appropriate lateral-inhibitory and self-excitatory connections are introduced so that the 

allocated unit may compete with preexisting perceptrons. Alternatively, one may assume a 

prewired architecture as in Figure 1 with a large number of inactive (zero weight) units. Here, 

a unit becomes active if the training algorithm decides to assign it as a cluster prototype unit, 

and is weights are adapted accordingly.  

The goal of the network training is to find a set of templates, which best represent the 

underlying structure of the samples. The general idea behind ART training is as follows. 

Every training iteration consists of taking a training example x, examining existing prototypes 

(weight vectors ) that are sufficiently similar to x. If a prototype  is found to "match" x 

(according to a "vigilance" test based on a preset matching threshold), example x is added to 

the cluster represented by , and  is modified to make it better match x. If no prototype 
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matches x, then x becomes the prototype for a new cluster. The details of the ART clustering 

procedure are considered next. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each learned cluster, say, cluster j, is represented by the weight vector of the j-th prototype 
unit. Every time an input vector x is presented to the net, each existing prototype unit compute 
an activation function T(x, wj) and output it to the winner-take-all compet function for 
determining the winner unit. The compet function computes a "winner" unit i. Subject to 
further verification, the weight vector of the winner unit wi now represents a potential 
prototype for the input vector. 

The verification comes in the form of passing the vigilance test, i.e. .  
is called the match function and is used to qualify how good is the likeness of x to wi. The 
function is used in conjunction with the vigilance parameter 0<ρ≤1. The vigilance is the most 
important network parameter that determine its resolution: smaller value allow for large 
deviations from cluster centers and hence lead to a small set of clusters; larger vigilance value 
normally yields larger number of output nodes and good precision. 

If the vigilance test is passed by the winner unit i for a given input x (here, the network is said 

to be in resonance), then x joint cluster i, and this unit’s weight vector wi is updated according 

to the update function U(x, wj). If the unit i don’t pass the vigilance test, the unit is 

deactivated (its output is clamped to zero until a new input arrives) and the test is repeated 

with the unit with the next highest output. If this scenario persists even after all existing 

prototype units are exhausted, then a new unit representing a new cluster j is allocated and is 

weight vector is initialized with x. 

Note that the learning dynamics described above constitute a search through the prototype 

vectors looking at the closest, next closest, etc., according to the compet and match functions. 

It also should be noted that this search only occurs before stability is reached for a given 

training set. After that, each prototype vector is matched on the first attempt, and no search is 

needed.  

Regardless of the setting of ρ, the ART network is stable for a finite training set; i.e., the 

final clusters will not change if additional training is performed with one or more patterns 

drawn from the original training set. A key feature of the ART network is its continuous 

FIGURE 1 The architecture of ARTMAH. 
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learning ability. This feature, coupled with the preceding stability result, allows the ART net 

to follow nonstationary input distributions.  

ART implement an unsupervised clustering method. ARTMAH (see [7]) on the other hand 

performs incremental supervised learning of labeled patterns. Comparing with the ART 

learning algorithm, ARTMAH has one extra loop which checks if the label of the pattern 

matches with the label of template. If labels matches, the algorithm proceeds as in the ART 

case. If label doesn’t match, the vigilance is boosted to activation value of current candidate 

plus a small positive number, and current winning node is suppressed. 

In the case of ARTMAH the activation and match functions are: 

  

  

The candidate is the one which has the minimum activation value, 

  

After resonance happened, in addition to the centers of the ellipsoids, the covariance matrices 

Sj for each cluster have to be updated as well. The recurrent equation for updating means and 

covariance matrices are: 

  

  

The classification is decided by the Mahalanobis distance, or activation function. The label of 

the template with which a pattern has the minimum Mahalanobis distance is the prediction. 

ARTMAH, is used below to create the digital identities of an iris biometric verification 

system. The number of neurons resulted after training the ARTMAH network corresponds to 

the total number of enrolled users. 

 

III  RESULTS 

In order to compare the performance of the ARTMAH network with other iris biometric 

systems we follow the experiments methodology presented in [8]. The experiments are made 

with ICs (Iris Codes) obtained from iris images captured with the LG4000 sensor. These iris 

images are found within ND-CrossSensor-Iris-2013 database 9. . The unwrapped iris segments 

are extracted with CFIS2 (Circular Fuzzy Iris Segmentation) and the iris codes are obtained by 

applying the Log-Gabor encoder. The training (TrainIC) and testing (TestIC) iris codes are 

firstly mean-shifted in the preprocessing phase: 

,
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
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nc

Mean  

,:1, nciMeanICTrainIC ii   

mcjMeanICTestIC jj :1,   

 

where mc is the total number of test iris templates, and nc is the total number of training 

templates. For enrollment, and for testing, each user honestly claimed its true identity, allowing 

the simulation of a logically consistent iris biometric system.  
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In the following, the performance of the proposed ARTMAH network is investigated in terms 

of two empirical measures, specific for biometric iris recognition systems, namely consistency 

and comfort. Both, consistency (1) and comfort (2), are acquired through satisfying adequate 

preliminary conditions, CP , for enrollment. Therefore, in a consistent theory of iris recognition, 

denoting by IC
S  an imposter score, i.e. the Mahalanobis distance of the imposter to the 

prototype of the cluster it was classified, and by GC
S  a genuine score, if the preliminary 

conditions of the enrollment procedure, CP , are consistent, then is implied that the maximum 

imposter score is smaller than the minimum genuine score obtained with the same classifier: 

)]min()[max( G
C

I
CC

SSP  , (1) 

In a comfortable theory of iris recognition, if the preliminary conditions of the enrollment 

procedure are satisfied, then between the maximum imposter score and the minimum genuine 

score may be fitted a comfortable (generous) safety band. 

)]min()[max( GI
CC C

SSP  , (2) 

It should be noted that the two conditions require that the intersection of supports of the 

genuine-score distribution and impostors-score distribution is empty. This implies that the 

confusion matrix, a general empirical measure used in classification problems, is a diagonal 

matrix, hence the classification error is zero. 

Organizing the Data 

Eight tests are performed in order to evaluate the robustness of the above introduced 

ARTMAH network. The tests are grouped in two sets, according to the training setup. For the 

first set of experiments, the training templates are sent in order, while for the second one the 

order is randomized. By ‘order’ should be understood that, for each individual that is currently 

in the enrolling phase, all its corresponding iris codes are presented, one by one, to the digital 

identity learning mechanism, before starting to enroll another individual. By ‘random’ should 

be understood that the templates of all the individuals that will be enrolled are not user-ID 

dependent when are presented to the ARTMAH network.  

There are used two training samples: a 100-individuals sample, containing 300 templates, 3 iris 

template per individual, and a 200-individuals one, with the same structure. The iris templates 

are selected randomly from the ND-CrossSensor-Iris-2013 database (LG 4000 sensor). For 

tests, each individual from the training set contributes with other 10 different iris codes. 

A structured view on the number of individuals and templates involved in each test, on the 

ordered or on the randomly trained ARTMAH network, is available in TABLE I.  

TABLE I.  THE NUMBER OF INDIVIDUALS AND TEMPLATES, RESPECTIVELY, INVOLVED IN THE 

PERFORMED EXPERIMENTS. 

 1
st
 test 2

nd
 test 

 Train Test Train Test 

No. 

individuals 
100 100 200 200 

No. ICs 300 1000 600 2000 

In the training phase of the ARTMAH network, several values for the vigilance parameter, ρ, 

have been used, until it managed to create the correct number of clusters, i.e. 100 for the first 
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experiment and 200 for the second one. In both cases, the value of the vigilance parameter that 

allowed forming the 100 and the 200 clusters was 0.7.  

The obtained genuine and imposter score distributions are illustrated below, and will show that 

our iris biometric system is both consistent and comfortable, maintaining a clear separation 

between its users, avoiding accidental or intended impersonations among them. 

The experiments performed on the multi-enrollment iris biometric system with 100 enrolled 

users proved that it is both consistent and comfortable, having null FAR and FRR and a large 

safety band between the minimum genuine score and the maximum imposter score, scores 

obtained for the templates from the test dataset. This iris recognition system is able to 

recognize the identities of all his enrolled users, regardless of whether the network was trained 

randomly or organized. 

In this second set of tests (200-users), the maximum imposter scores and the minimum genuine 

scores continued to have values that are distant enough, allowing the system to perform 

according to the consistent and comfortable theory. It can be seen that, as observed for the 100-

users multi-enrollment iris biometric system, the imposter scores have the tendency of 

conglomerating under the 0.7 threshold, allowing null FAR and FRR. Also, there is no 

difference between the results obtained for the tests performed on the system that used an 

ARTMAH network trained with iris templates in user’s ID order, and the tests performed on 

the one that used an ARTMAH network trained with randomly organized iris templates. 

  
(a) (b) 

FIGURE 2 The y-scale logarithmic representation of genuine and imposter score distributions of a 

multi-enrollment iris biometric system with 200 enrolled  users. The genuine and imposter score 

comparisons are obtained on the test dataset. (a) ordered training (b) random training. 

It can be noticed, see Figure 2, that the genuine scores from interval 0.86-0.94 have a different 

behavior, indicating that the iris templates from the test dataset might have been subject to 

noisy acquisition. The results obtained for the four tests allow the conclusion that, no matter if 

the digital identities are established randomly or ordered – the proposed iris biometric 

verification system is consistent and able to offer both stability and comfort. Also, these two 

different manners of presenting the iris codes to the network in the training phase show that the 

proposed architecture of the neural network is independent of the order of the training patterns. 

 

IV. CONCLUSIONS 

This paper presents an iris biometric system based on an ARTMAH neural network that 

achieves good results in terms of both consistency and comfort. The genuine and imposter 
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score distributions showed that the system successfully recognizes its users, obtaining null 

FAR and FRR. The system proved to be robust, by performing very well in all the tested 

scenarios, allowing a generous safety band between the minimum genuine and maximum 

imposter scores. 
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Abstract 

We analyzed data of 111 patients with successful cardiopulmonary resuscitation following out-

of-hospital cardiac arrest. All patients were treated for 24 hours with mild therapeutic 

hypothermia (33°C) using endovascular temperature-controlling system. Clinical results were 

assessed according to the cerebral performance category (CPC) at 30 days. Markers of oxidative 

damage to DNA, RNA and phospholipids were measured at admission, 12 and 30 hours of 

follow-up. While the information on patients’ survival and CPC at 30 days follow-up was 

complete, markers of oxidative damage and few other predictors could not all be measured as 

planned. We use multiple imputation (MI) of missing values following partial regression 

reconstruction of missing values in markers of oxidative damage at baseline. We use Bayesian 

proportional odds logistic regression (BPOLR) in the context of MI and extend the R package 

‘mi’ to allow for calculating confidence limits for the OR. We further use Weibull modeling of 

right- and interval-censored data in the presence of incomplete data. Similarly as with BPOLR 

we use rules for combining variance from within and between MI samples to draw inference 

from Weibull regression in the context of MI. 

Keywords: Bayesian POLR, Cardiac arrest, Cardiopulmonary resuscitation, Incomplete 

data, Weibull survival  

 

I. INTRODUCTION 

 

Primary purpose of our study involving 111 patients with successful cardiopulmonary 

resuscitation following out-of-hospital cardiac arrest was to characterize the association 

between the values of selected markers of oxidative damage measured at baseline and the 

cerebral performance category (CPC) determined after 30 days of follow-up. All patients were 

managed according to the international guidelines for post-resuscitation care and underwent 

mild therapeutic hypothermia (33°C) for 24 hours using endovascular temperature-controlling 

system [1]. Markers of oxidative damage to DNA, RNA and phospholipids (Isoprostan) were 

measured at admission and 12 and 30 hours after admission to the intensive care unit (ICU). 

Baseline values of these markers were, however, not completely available and the records 

exhibited large patterns of incompleteness.  

The principal outcome variables assessing 30-days cerebral performance (good neurological 

result, moderate neurological dysfunction, serious neurological damage, persisting coma or 

death during follow-up) and patients' survival were completely observed. However, the 

missing patterns observed in the levels of markers of oxidative stress at baseline would not 

appear suitable for direct employment of multiple imputation. We were, however, able to 
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recover some missing baseline marker values from those observed later during the follow-up.  

We used regression reconstruction (RR) as an approximate method of evaluating missing 

marker values at baseline. From a clinical perspective it was not considered optimal to 

directly substitute the values missing at baseline with those observed later during the follow-

up and that notion was further confirmed by statistical testing. We therefore used simple 

linear regression as an approximate method for reconstructing missing baseline marker values 

from those measured 12 or 30 hours into the follow-up. Residual missingness patterns 

following RR appeared suitable for employing multiple imputation (MI) [2, 3] and the MAR 

assumption would not appear to be violated. 

Patterns in the original data are shown in Figure 1. Apart from those observed at baseline we 

also display associated patterns observed in the three markers at 12 and 30 hours into the 

follow-up. The upper panel of Figure 2 displays reduction in missingness patterns of baseline 

marker values following RR, the lower panel shows average completed data after MI. 

 

 

 
Figure 1.  Missigness patterns in the original data. 
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Figure 2.  Missigness patterns after MI following RR.  

 

II. METHODOLOGY 

From the clinical standpoint an adverse outcome of primary interest was defined as death of a 

patient or the occurrence of serious neurological damage during 30-days of follow-up. The 

employed statistical methodology was carefully selected to match the clinical perspective. 

Patient data allowed for performing both the cohort (longitudinal) as well as ordinal cross-

sectional analysis. While the fatal events were directly observed, occurrence of serious 

neurological damage was determined at 30 days of follow-up. The latter events, however, 

could have occurred at any time between the patient's study entry and the end of follow-up. 

Longitudinal data thus expressed a mixture of right- and interval-censored data suitable for 

Weibull survival modeling.  

A compatible methodological approach to cross-sectional analysis of our data was represented 

by the Proportional Odds Logistic Regression (POLR). Both aforementioned approaches had 

to be adapted to the MI scenario. We used R's packages 'mi' and 'arm' [4] and the rules for 

combining variance from within and between MI samples to extend 'mi' package's capability 

and obtain confidence limits (CL) for the odds ratios (OR) based on the Bayesian POLR 

model. Similarly, in the longitudinal context we used rules for combining variance from 

within and between MI samples to draw inference from Weibull regression in the context of 

MI. 

 

III. RESULTS 

A summary of the results obtained from both cross-sectional and longitudinal analysis in the 

context of MI are shown in Tables 1 and 2.  

By employing Bayesian POLR model in the context of MI after RR we modelled the odds of 

favourable neurological result vs. serious neurological damage or death within 30 days of 

follow-up, in parallel with the odds of favourable result or serious neurological damage vs. 

death of a patient. 

In contrast, a cohort (longitudinal) data analysis was estimating the hazard associated with 

adverse outcomes (serious neurological damage or death) thus rendering a reciprocal 
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interpretation. Results from the Weibull survival model for right- and interval-censored data 

obtained in the MI context after RR are shown in Table 2.  

 

Table 1: Bayesian POLR model results following RR & MI data completion 

Covariates 

(baseline values) 

Odds Ratio  

(OR) 

95% Confidence 

Limits for the OR 
p-value 

log(RNA) marker 1.482 (0.852, 2.577) 0.1607 

log(DNA) marker 1.863 (0.674, 5.149) 0.2113 

log(Isoprostan) marker 0.258 (0.115, 0.579) 0.0015 

log(ROSC) 0.069 (0.018, 0.265) 0.0002 

log(CRP) 0.428 (0.244, 0.752) 0.0046 

log(Lactate) 0.232 (0.096, 0.561) 0.0019 

Gender 3.329 (1.091, 10.153) 0.0348 

 
In both instances, the inference is based on 5 MI-completed datasets which was a default 

option for the 'mi' package. This allowed us to verify the variance estimation procedure in the 

context of BPOLR programming using the 'arm' package. A non-Bayesian averaging of 

parameter estimates over 5 completed datasets was applied in case of Weibull modeling and 

again the rules for combining the variance from within- and between-MI samples were 

applied to draw inference shown below. 

 

Table 2: Weibull modeling results for right- and interval-censored data following RR & MI 

data completion 

Covariates 

(baseline values) 

Hazard Ratio  

(HR) 

95% Confidence 

Limits for the HR 
p-value 

log(RNA) 0.759 (0.528, 1.092) 0.1374 

log(DNA) 0.801 (0.428, 1.498) 0.4872 

log(Isoprostan) 1.429 (0.935, 2.184) 0.0992 

log(ROSC) 4.804 (2.071, 11.145) 0.0003 

log(CRP) 1.645 (1.179, 2.294) 0.0034 

log(Lactate) 2.934 (1.682, 5.117) 0.0001 

Gender 0.361 (0.166, 0.784) 0.0101 
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IV. DISCUSSION 

Both the cross-sectional modeling of ordinal outcome and the longitudinal data analysis 

performed in the context of incomplete data rendered similar results. Multiple imputation 

following regression reconstruction of missing data allowed us examining all three genetic 

markers simultaneously as part of one statistical model. This would not be possible when 

analyzing complete case subsets of our data. Such approach would be also be highly 

susceptible to rendering biased results. Extending the capabilities of the 'mi' package by 

writing the additions with the use of the 'arm' package in R allowed us to obtain additional 

inference from the BPOLR model and obtain similar inference from the Weibull survival 

modeling in the context of MI. 

 

V. CONCLUSION 

Multiple imputation following regression reconstruction helped in assessing simultaneous 

impact of the three target genetic markers of oxidative damage on the survival and the 

occurrence of serious neurological damage to the brain within 30 days of patients' follow-up. 

This would not be possible if we were just using the complete subsets of our data while such 

approach would be highly susceptible to rendering biased results.  
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Abstract 

Clostridium difficile is a type of bacteria frequently causing hospital infections. The aim of our 

study is to find main risk factors, which have significant influence on these infections. We 

analyse data collected in one of polish hospitals. The data include many features which are 

potential risk factors, but only few of them are truly relevant. Thus we consider the statistical 

problem of feature selection. The response variable, the level of infection, is measured in an 

ordinal scale. Most of standard methods of feature selection are not suitable to deal with this 

type of data. Therefore, apart from some analyses using standard statistical tools, we apply a 

relatively new method, named “ordinal regression”. We explain theoretical foundations of this 

method, with some recent results. We consider and apply a version of adaptive LASSO for 

ordinal regression. This algorithm is based on hinge loss, absolute deviations penalty and convex 

piecewise linear minimization. 

Keywords: Hospital infections, Risk factors, Ordinal scale, Feature selection, LASSO, 

Adaptive LASSO, Least Absolute Deviations, Hinge Loss, Convex optimization. 

 

I. INTRODUCTION 

 

Clostridium difficile (Cd) is a type anaerobic bacteria producing toxins. This bacterium 

constitutes 3% of the physiological intestinal flora of the adult. It forms the spores immune to 

the warmth which are able to survive for months or for years. Cd is being regarded as the 

main pathogen causing hospital intestinal illnesses starting from mild diarrhoea to threatening 

the life the pseudomembranous colitis. Prevalence among hospitalized patients is 20%-40%. 

Cd is surprisingly omnipresent:  

 Present in sand, dung of camels, horses and donkeys, droppings of dogs, cats, birds.  

 Also present on human genitals, in digestive tract and faeces.  

In the USA, Cd causes about 3 million cases of diarrhoea and enteritis (annually from 5 

thousand up to 20 thousand demises). Numbers of cases of infection and deaths are 

increasing. Cd is spreading via dirty hands, toilets, contact with the hospital equipment etc. 

Cd infections frequently occur after antibiotic therapy.  

The aim of our statistical analyses was to discover features which significantly increase the 

risk of Cd infections in a hospital. The data used in our study are described in more detail in 

the next section. The database includes explaining variables and the response variable: Cd 

infection. There are two specific aspects of these data, which make the analyses difficult.  

 There are many explaining variables in the data but only a few of them are really 

relevant (i.e. significantly influencing Cd infections). Thus the main aim is to choose 
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the relevant features.  

 The response variable is measured in an ordinal scale (i.e. it is possible to compare the 

severity of infection, but it is not appropriate to assign numeric values to the levels of 

severity).  

The problem of feature selection, or model choice, has long been studied in statistical 

literature and recently attracts even more attention. There are numerous statistical tools and 

procedures to tackle this problem. One of the most successful approaches is based on the idea 

of penalized estimation, e.g. different versions of LASSO estimators. However, most of the 

existing methods of feature selection are developed either for numeric response variables or 

for categorical type data (qualitative variables). In the case of ordinal type response, theory of 

feature selection is less developed and few algorithms exist. The character of our Cd data 

motivates the use of specialized and new methods.  

 

II DATA 

In our analyses we used a database which was created in a chosen polish hospital, based on a 

questionnaire about hospital infections. The survey concerned 445 patients and included 45 

quantitative and qualitative features. These features were regarded as potential factors for Cd 

infection, i.e. as explaining variables. The response variable was (presence and degree of) Cd 

infection. In the database the name of this variable was “zakazenie”, which is polish term for 

“infection”. This variable was measured on an ordinal scale with 5 values (0 - no infection, 

values 1-4 correspond to concentration of toxins (in the increasing order).  

In the table below there is a list of the original names of variables in the database 

(abbreviations of polish terms; for example: “antybiot” = “antybiotykoterapia” = “antibiotic 

therapy”, “wc” = “availability of a separate toilet in a hospital room” etc.).  

Data: 444  cases (patients), 45  variables (features):  

 

id  patogen  zakazenie   

grupa  klinika  chir.int.oit   

odc  plec  wiek   

data.przyj  data.zak  dni.od.przyj.do.zakazenia   

tryb.przyj  hosp.lub.zak.6msc  pielucha   

wc  prysznic  ilu.pacjentow   

antybiot  cukrzyca  niewyd.nerek  

niewyd.watroby  nidozyw.lub.wyniszcz  endosk  

IPP  antag.H2  zyw.pozajel   

immunosupres  prep.krwi  autotransf   

transplant  hemodial  kraz.pozaust   

radioter  chemia  zgleb.zoladk   

nawrot.raz  nawrot.drugi  kolejny.nawr   

operacje  reoperacje  wspol.zak   

zak.szp.objaw  zak.pozaszp  nklas   

 

Severity of infection is described by variable “zakazenie” (meaning “infection”). This 

variable has 5 possible values: symbol “0” for the absence of infection and symbols “1”, 

“2”,“3”,“4” encoding the degree of concentration of toxins. The frequency is given in the 

following table:  
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0  1  2  3  4   

213  15  19  15  182   

 

Let us emphasize that the levels (degrees) are ordered but do not correspond to concrete 

numerical values – they are only conventionally assigned descriptions. Put differently, the 

response variable is measured in an ordinal scale. Statistical inference for such data is 

difficult. The standard procedure is to regard ordinal data either as numeric (i.e. treat 

conventional levels as measurements in some fictious units) or as categorical (i.e. disregard 

the ordering of levels). In the case of our Cd data, we can either treat 0, 1, 2, 3, 4 simply as 

numbers (and apply e.g. classical linear regression) or treat 0, 1, 2, 3, 4 as unordered labels 

(and apply e.g. discriminant analysis). Neither of these approaches is satisfactory. The first 

approach suggests that (for example) level “4” is twice as big as level “2” which is nonsense. 

The second approach suggests that difference between “0” and “5” is equally important as 

that between “1” and ‘2”. Of course we can also reduce the levels to a binary variabe 

(infection absent/present):  

 

0     

213  231   

 

Methods for analysing binary data are much better developed and there is off-the-shelf 

software easily availabe (e.g. logistic regression). However, if we reduce 5 levels to 2, some 

information must be lost!  

 

III. GOAL AND METHODS OF ANALYSIS 

The aim of the studu is to find variables that significantly influence Cd infection (risk factors). 

We applied several statistical methods. Apart from some classical and standard methods, we 

also applied specialized algorithms for ordinal regression. The following methods have been 

used:  

 Ordinary least squares regression (Degree of Cd infection considered as a numeric 

variable).  

 Logistic regression (Degree of Cd infection reduced to a binary variable).  

 Ordinal variable regression (Degree of Cd infection considered ordinal variable). Two 

approaches to ordinal type data have been applied:  

- “Cumulative risk model” due to Agresti (2002), implemented as R function 

polr(MASS).  

- “Ordinal regression” introduced by Bobrowski (2007).  

The figure below shows the ROC curves corresponding to several logistic functions obtained 

by the method of Agresti.  
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The analyses based on logistic regression and Agresti’s method have found 6 most relevant 

features: “antybiot”, “klinika”, “antag.H2”, “endosk”, “chemia”, “niewyd.nerek” (antibiotic 

therapy, clinic, blockers of H2 receptors, endoscopy, chemotherapy, kidney failure).  

In the methodological part of this paper we focus on the last, nonstandard method, which was 

investigated by the authors in several papers (Niemiro and Rejchel 2009, Rejchel 2009, 

Rejchel 2014). 

 

IV. ORDINAL REGRESSION 

In this section we explain the foundations of the algorithm introduced by Bobrowski (2007) 

under the name of “rank regression”. but Since this term has different connotations, we will 

use the name “ordinal regression”, which is more appropriate in our opinion. Consider the 

statistical model with the following variables: 

  - response variable measured in ordinal scale:  means that object  is 

“better” or “bigger” than  with respect to . We do not assign numeric values to . 

Examples of such variable are  “severity of infection”,  “degree of 
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improvement” and similar.  

  - -dimensional vector of predictors - either numeric or qualitative 

(e.g. coded in “0-1” scale). 

Linear ordinal regression (scoring) function is , where 

 is the regression parameter. 

 The idea is to construct such a function , that the ordering of its values is 

consistent with the ordering of the -values.  

- Ideally,  should imply that  (function of  ranks objects 

perfectly). 

- More realistically, we look for such a parameter  that  

implies that  with “high probability” (function of  ranks objects as 

correctly as possible with a margin). 

Let us now describe a method of fitting ordinal regression. We assume that the data (learning 

sample) are of the following form:  

  - response variable observed for  objects (e.g. patients) .  

  - vectors of predictors observed for these  objects. 

 

1. Hinge loss criterion 

The ordinal regression function is obtained by minimization of the following criterion with 

the “hinge loss”:  

 

 

 

(1) 

 

 

This loss is 0 if  implies , (linear funcion of  ranks s correctly with 

a margin). The details about this criterion are explained in Bobrowski (2007), Niemiro & 

Rejchel (2009), or Rejchel (2012). Let us mention that from this criterion is very convenient 

computationnally. Since  is a convex piecewise linear function, its minimum can be 

computed via basis exchange techniques (Bobrowski & Niemiro 1984). An implementation of 

this method as R function was developed by the authors. The graph below illustrates the hinge 

loss used in the definition of . 
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2. Model selection via regularization 

We expect that many features are irrelevant. Formally: some of regression coefficients  

should be . To find zero coefficients, we add a “regularizer” to the loss function, i.e. 

modify the minimization problem as follows:  

 

 

(2) 

where  is some weight (penalty for nonzero coefficient ). The idea is similar to LASSO 

estimators in ordinary least square regression, first proposed by Tibshirani (1996). The 

minimizer of the penalized loss, i.e. the solution to the above optimization problem will be 

denoted . Typically  has some coordinates zero. 

 

3. Population and sample parameters 

To understand the sense of the theoretical results to follow, we have to clarify the distinction 

between parameters which describe a population of objects and their sample counterparts. We 

need the following notation. The basic criterion function  is computed for a sample of  

objects: . Note that the definition of  can be rewritten in a slightly 

different form:  

 

 

(3) 

The theoretical counterpart, describing the population of objects is the following:  

 

  (4) 
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where  and  correspond to two objects independently selected from 

the population, (considered as random vectors). Therefore:  

 

 
 

 

(5) 

 

4. Prediction and testing sample 

Ordinal regression serves to predict ordering of new objects (testing sample):  

 Consider objects  and .  

 Assume that  and  are observed (measured) but the ordering between  

and  is unknown and should be predicted.  

 If  then we predict that .  

Of course, prediction makes sense if the new objects are not included in the learning sample. 

The quality of prediction is measured by the probability of making the correct decision about 

the ordering:  

  (6) 

 

An estimator of  should be based on a testing sample , collected 

independently of the learning sample :  

 

 

 

(7) 

 

5. Oracle properties of the estimator 

Assume that the population regression parameter  has zeros. As in the previous section,  

denotes the minimizer of the penalized loss function. Define the following sets of coordinates:  

  is the set of “relevant explanatory variables”.  

  is the set of variables estimated as relevant.  

Let  and .  

There are two properties of a ”good” estimator/selector, often considered in the literature:  

1. ,  

2. , where  is the standard asymptotic 

distribution of an “oracle” estimator based on prior knowledge of .  

The first property has rather obvious meaning. It is called “model consistency”. The second 

requirement is that the estimator should be asymptotically as good as the fictious “oracle” 

estimator.  

6. Some theoretical results 

Rejchel (2014) has shown that the desired oracle properties hold if  

 

  (8) 

 

But  is unknown, so the above condition cannot be applied. The question is “how to choose 

weights?”. An answer given by Rejchel (2014) is based on the idea of adaptive LASSO, 
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proposed by Zou (2006). We first use a preliminary estimator  and put . These 

weights are used in the second stage to compute the final estimate .  

[Rejchel, 2012] Assume  is a -consistent,  and . Then  

 

 

 

(9) 

 

satisfies  

1.   

2.   

(Under some technical “regularity” assumptions, which are omitted. The details and rigorous 

statement can be found in the cited paper.)   

 

V. RESULTS OBTAINED FOR ORDINAL REGRESSION 

 

The data consisting of  cases (one case was omitted, because it contained missing 

values) was divided into a learning (training) sample of size , a validating sample 

of size  and testing sample of size . After a preliminary analyses we 

reduced the number of variables to . The validating sample was used to choose the 

best parameter  in the penalty term. The candidate values of  were in the range 

. Apart from the adaptive penalized estimation described in the previous 

section, regularized estimators with  and  type penalty were computed. On the testing 

sample, the quality of ordering prediction was assessed. The whole procedure (dividing the 

data into a training sample, validating sample, computing the regression and evaluating its 

predictive quality) was repeated 30 times. Below we report the averaged final results.  

 

Estimator  Predictive 

quality  

Number of 

chosen   

 (std. dev.)  features   

without penalty term  0.695 (0.050)  21   

 penalty  0.697 (0.039)  18.5   

 penalty  0.706 (0.042)  21   

adaptive estimator  0.692 (0.042)  17   

 

The results obtained by this method are consistent with earlier, more classical analyses. In 

particular, 6 relevant features discovered by Agresti’s method have been always included in 

the sets of variables found by ordinal regression.  
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Abstract 

Microarrays data set is a collection of a few dozen or at most a few hundred multi-dimensional 

observations containing thousands of variables that measure the level of genes expression. 

Among these thousands of genes, only a small part is really active. In classification of 

microarrays we encounter a high-dimension problem. Thus, an important step in the data 

analysis is a proper selection of a subset of genes in such a way that significant medical 

information will not be lost. 

Grade Correspondence Analysis (GCA) is a multidimensional method that makes use of 

multidimensional dependencies both between variables and cases. Therefore, the aim of the 

work is an assessment of usefulness of GCA for dimensionality reduction in comparison with 

commonly applied methods.  

Two huge genomic data sets were analyzed. Whole sets were randomly divided into two subsets 

with almost equal number of patients. For each discriminating problem, the first subset was 

applied for a selection of the most discriminating genes. The second subset was used to assess 

generalization properties of the selected genes. Results obtained are really encouraging. 

The selected genes overlap to a large extent with the results of the other, more commonly used 

dimension reduction techniques. Additionally, classification errors assessed on the basis 

of selected subsets of genes are comparable. 

Keywords:  Grade Correspondence Analysis, genes selection, microarrays 

 

I. INTRODUCTION 

 

An important medical application of genomic data sets is separation of the sick from 

the healthy. A choice of a representative subset of genes eliminates information noise, and 

contributes to the development of medical knowledge. The results can be used in personalized 

medicine. 

An overwhelming number of the known methods of selecting the most active genes are based 

on the one-dimensional analysis [1], though different methods for multiple tests are developed 

and selection procedures include corrections for multiple testing.  

The Grade Correspondence Analysis (GCA) –a multidimensional method which takes into 

account dependencies between both variables and cases - was considered. The grade method 

gives the opportunity of data mapping and visualization. After reduction of dimensionality 

performed with the grade methodology, visualization of the discriminated patients together 

with the connection with important genes might be done.  
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II. METHODOLOGY 

The grade (i.e. copula based) approach to multivariate data analysis and its application 

to explore different sets of clinical data was presented during the last Seminars on Statistics 

and Clinical Practice. The grade methodology gives an invaluable tool in medical research. 

Grade methods also turned out to be reliable for high-dimensional data and exploration 

of huge datasets just as we thought. 

Principles of grade methods and models were thoroughly discussed in [2-3].The main grade 

methods are: Grade Correspondence Analysis (GCA) and Grade Correspondence Cluster 

Analysis (GCCA). Both basic grade procedures GCA and GCCA may be applied 

to investigate and visualize multivariate additive (or approximately additive) datasets with 

m cases and k variables. GCA permutes rows and columns in a two-way table to achieve 

a table with the maximal value of Spearman rho ( ) or of Kendall tau (τ) to emphasize 

the strongest and the most regular monotone dependence. GCCA performs cluster analysis 

of a two-way data table starting from GCA so that rows and columns are already ordered 

according to the observed trend of relationship discovered by maximization of   or τ. 

The numbers of clusters to be formed (for rows and columns or only for rows or only for 

columns) are a priori chosen by are searcher, while their sizes (numbers of elements inside) 

are found in GCCA by maximization   or τ in the table with aggregated clusters.  

Datasets 

Analysis was performed on two genomic data sets: Prostate data set [4] and Colon data set 

[5]. Each genomic data set additionally includes information of two groups of the patients’ 

state. In the examined sets (Prostate and Colon data sets), tumor versus normal classification 

is considered. In the Prostate data set 52 tissues out of 102 are tumor tissues (i.e. 52 prostate 

tumor samples and 50 non-tumor, normal prostate samples). Expression levels of 6033 genes 

are reported. In the Colon data set 40 tissues out of 62 are colon tumor tissues and 22 are 

normal. Expression levels of 2000 genes are reported. 

Whole sets (6033 variables x 102 patients and 2000 variables x 62 patients, respectively) were 

randomly divided into two subsets of approximately equal number of patients. Thus, 

P1 subset of the Prostate data set has 6033 genes and 51 patients (where 23 are tumor cases) 

and P2 subset consists of 6033 variables with 51 cases, with 29 tumor subjects. C1 subset of 

the Colon data set contains expression levels of 2000 genes and 32 patients (with 20 colon 

tissues) and C2 subset consists of  2000 variables and 30 cases, with 20 colon tissues. 

For each discriminating problem, the first subset P1 or C1, respectively, was applied for 

a selection of the most discriminating genes. The second independent set P2 or C2, 

respectively, was used to assess generalization properties of selected subsets of genes. P2 was 

divided into k=10 cross-validation subsamples and the 10 cross-validation error was 

calculated. C2 is similarly divided into k=5 cross-validation subsamples, because it contains 

smaller number of cases, namely 30 patients. Cross-validation  into k folds was used to assess 

generalization errors.  

Selection of variables methods  

Many authors applied different selection of variables methods to solve the microarrays 

classification problem [6]. Grade methods and thirteen other methods for dimension reduction 

were performed (Tab.1). 
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Table 1 

The methods for dimension reduction  for microarrays. 

Selection method name Description 

1. GCA Grade Correspondence Analysis  

2. PAM Prediction Analysis of Microarrays 

3. WilcoxonRanSum Wilcoxon test  

4. SAM Significance Analysis of Microarrays  

5. SAMnPar Significance Analysis of Microarrays, Wilcoxon   

6. PermutAdjPmaxT permutation adjusted t-test  

7. PermutAdjPmaxTWilcox permutation adjusted t-test  

8. BenHochberg T-test with Benjamini-Hochberg correction for multiple tests 

9. PredStength Prediction strength 

10. BetweenClassScatter Between-classs catter 

11. BetweenWithinRatio Between-within ratio  

12. InformGain Information gain 

13. TwoingRule Twoing rule 

14. Gini Gini index 

 

III. RESULTS 

The grade exploration has been done to analyze and visualize genomic datasets. Both basic 

grade procedures GCA and GCCA have been applied to investigate datasets P1 and C1. After 

GCA ordering the learning set P1 turned out to be quite regular (grade parameters: ρ*max=0.36, 

τ=0.24), while the learning set C1 – completely irregular and difficult for analysis (ρ*max=0.06, 

τ=0.04). Next an advanced ordering grade procedure has been applied - only for genes of two 

connected segments of patients (sick and healthy). Then grade decomposition with division 

set P1 into 100 ordered and possible homogeneous clusters of genes and C1 into 50 ordered 

clusters have been done. The selected 13 diagnostic genes (from P1) and 35 genes (from C1) 

to discriminate between the sick and the healthy have been chosen from the first and the last 

clusters obtained after an application of GCCA procedure only for variables.  

The post GCA maps for selected genes in learning and in testing sets (with their grade 

parameters) are presented in Fig.1-2 on the coloured appendix Results of Multivariate Grade 

Data Analysis in Genes Selection for both investigated multivariate genomic datasets. 
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IV. DISCUSSION 

Comparisons of genes selected by GCA with other examined reduction dimensionality 

methods 

For the Prostate dataset the agreement of the chosen genes sets for 100, 48 and 13 variables 

was examined for all methods of dimensionality reduction from Table 1. 

The intersection of genes sets chosen by GCA and other examined selection procedures were 

investigated. Concordance of 100 genes chosen by GCA and other selection procedures is 

presented in Fig.3 The highest concordance of about 40% is obtained with Prediction Analysis 

of Microarrays (PAM) or BetweenClassScatter method. In subset of 48 genes chosen by GCA 

the concordance about 40% is also obtained (Fig.4). 

Next, smaller number of 13 genes are obtained according to GCA analysis: 5016, 2694, 1989, 

2746, 4255, 2443, 2425, 4448, 1839, 5662, 5639, 1607, 1897 (Fig.5). All these 13 genes are 

in subset of 48 genes and 12 coincide with variables chosen to subset of 100 genes (variables: 

1897, 1607, 1839, 4448, 2425, 5662, 2443, 4255, 2746, 2694, 1989, 5016). 

For the smallest number of 13 genes chosen by GCA Venn diagrams are elaborated, which 

show the number of overlapping genes chosen by 5 methods. Fig. 6 on the left side shows 

number of overlapping genes obtained by GCA with InfGain, between-within ratio (BW), 

TwoingRule, and Gini. Similarly, right side of this figure visualize concordance of 13 genes 

chosen by GCA with PAM, Significance Analysis of Microarrays (SAM), adjusted t-test 

(PermutT) andBenjamini-Hochberg procedure (BenjHoch).  

For 13 genes obtained by GCA, 6 variables are overlapping with TwoingRule. These are 

genes identified in the set by numbers: 1839, 1989, 2694, 2746, 4255, 5016. Similarly, we 

obtained four genes overlapped with PAM and those genes are the following: 1839, 2425, 

2746, 5016. Three genes with the identifiers 1839, 2425, 5016 are concordant with PermutT. 

Two genes with identifiers 1839 and 2425 are the same as obtained with BenjHoch.  

The applied supervised classification was SVM with c=1. For a subset of 15 genes, selected 

on the basis of GCA, the errors obtained by CV10 are compared with the same classifier, but 

the selection of genes will be used by popular PAM method of selection. Similarly, 

an adequate comparison for SVM c =2 was made (Fig.7).  CV10 estimation was performed on 

51 microarrays, remaining after the exclusion from the whole set other 51 microarrays, used 

previously to the stage of the genes selection. After the division of CV, nine subsets in 

the cross-validate contains 5 microarrays and one subset is consisted of 6 microarrays. 

Comparison of the number of misclassified microarrays from the testing cross-validated 

sample is shown in Fig.7. The results are presented in an aggregated form for the genes 

chosen by GCA and PAM methods. For the Prostate set, classification results by SVM with 

the regularization parameters c=1 and c=2, yielded results comparable to the PAM method for 

the number of genes 7-12, but the results were better for smaller number of genes. The first 

four selected genes according to GCA are: 5016, 2425, 4448 and 1839. Further analysis may 

take advantage of the genes found with the lowest level of errors in the supervised 

classification. The databases of the functions of genes (genes ontology data bases) may be 

used for biomedical interpretation. 

For the Colon dataset,100 genes from GCA are considered in comparison to other genes 

number reduction methods and the results obtained are presented in Fig.8. PAM selection is 

now concordant in about 50%. A similar agreement is obtained for BetweenClassScatter 

selection, and even is higher (or at least equal) for number of genes exceeding 50.  
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Another set obtained by GCA methodology has been also examined - the smaller set of 50 

variables. However, the set is not a subset of 100 genes, because only 47 genes are the same. 

Almost 50% accordance is obtained at the end of the curve (50 genes) for PAM procedure 

(solid line on Fig.9). The highest concordance for PAM is obtained between 20 and 30 genes 

– almost 60%. Also SAM method is concordant with GCA selection in more or less 50%. 

For chosen 34 genes concordance of about 60% is obtained, depending on the increasing 

power of subsequent subsets. Above 60% concordance between GCA with PAM is achieved 

for 16 genes (Fig.10). 

 

V. CONCLUSION 

The selected genes subsets overlap to a large extent with the results of the other, more 

common used dimension reduction techniques. Most frequently, the PAM method from whole 

examined set of variables selection method is the most concordant with GCA. 

Additionally, classification errors assessed on selected subsets of genes are comparable. 

The advantage of GCA applied as genes selection method over the known genes selection 

procedure is that after the dimension reduction, the visualization of discriminated patients 

together with the connection with important genes might be done. The visualization may be 

given for both learning and testing subsets, where the appropriateness of selection might be 

assessed by testing sample. The line for clusters of patients may be added to the plot and 

based on this visualization, the division misclassifications into tumor and normal cases might 

be done, so specificity and sensitivity is possible to take into account in medical decision- 

making. 

 

Acknowledgements 

The Authors would like to thank Professor Elżbieta Pleszczyńska - a distinguished Polish 

statistician and the other founders of the grade methodology. 

 

References 

1. BoulesteixA.-L., StroblC., Augustin T., Daumer M.: Evaluating Microarray-based Classifiers: An 

Overview. Cancer Inform. 2008; 6, 77–97. 

2. Szczesny W., Kowalczyk T., Wolińska-Welcz A., Wiech M., Dunicz-Sokolowska A., Grabowska 

G., Pleszczyńska E.: Models and Methods of Grade Data Analysis: Recent Developments, IPI 

PAN, Warszawa, 2012. 

3. Kowalczyk T., Pleszczyńska E., Ruland F.[Eds.], Grade Models and Methods for Data Analysis. 

With Applications for the Analysis of Data Populations. Berlin, Springer Verlag, 2004.  

4. Singh D., et al., Gene expression cor635 relates of clinical prostate cancer behavior, Cancer Cell 1 

2002, 2, 203 –209. 

5. Alon U.: Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and 

Normal Colon Tissues Probed by Oligonucleotide Arrays. PNAS. 1999, 96, 6745-6750. 

6. van Sanden S., Lin D., Burzykowski T.: Performance of Gene Selection and Classification 

Methods in a Microarray Setting: A Simulation Study. Communications in Statistics - Simulation 

and Computation Volume 37, Issue 2, 2008. 

 

 



51 

 

Results of multivariate grade data analysis in genes selection 

 

 
Fig.1. The post-GCA maps for 51 patients (learning group-above, testing group-

below) and 13 genes chosen from 6033. The values of grade density are determined 

by colours according to the blue/purple scale given at the right side of the map. Dark 

arrow-shaped markers are attached to the sick. Parameters of monotone dependence: 

ρ*max=0.45, τ=0.31, the regularity index τmax/τabs=0.68 (for upper map) and 

ρ*max=0.43, τ=0.29, the regularity index τmax/τabs=0.62 (for bottom map)  
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Fig.2.The post-GCA maps for 32 (learning group-above), 30 (testing group-below) 

patients and 35 genes chosen from 2000. The values of grade density are determined 

by colours according to the orange/green scale given at the right side of the map. 

Dark arrow-shaped markers are attached to the sick. Parameters of monotone 

dependence: ρ*max=0.15, τ=0.10, the regularity index=0.57 (for upper map) and 

ρ*max=0.13, τ=0.09, the regularity index =0.54 (for bottom map). 
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Fig.3. Number of common genes for 100 variables from P1 set chosen by GCA and other 

selection procedures. 

 

Fig.4. Number of common genes for 48 variables from P1 set chosen by GCA and other 

selection procedures.
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Fig.5. Number of common genes for 13 variables from P1 set chosen by GCA and other 

selection procedures. 

 

 

 
 

Fig.6. Venn diagram for comparison of 13 genes from P1 set selected by GCA with the 

highest ranked genes by InfGain, between-within ratio (BW),  TwoingRule, and  Gini (left 

side) and  PAM,  SAM, permutation adjusted t-test and  Benjamini Hochberg procedure 

(right side). 
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Fig.7. Assessed number of misclassified microarrays by SVM (parameters c=1 and c=2, 

respectively) for genes selected by PAM and GCA. 

 
Fig.8. Number of common genes for 100 variables from set C1 chosen by GCA and other 

selection procedures.
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Fig.9. Number of common genes for 50 variables from set C1 chosen by GCA and other 

selection procedures. 

 
Fig.10. Number of common genes for 35 variables from set C1 chosen by GCA and other 

selection procedures. 
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Abstract 

In the last two decades Bayesian networks have proven to be powerful tools for modeling 

complex uncertain problems, such as those encountered in medical domains.  Knowledge 

engineering for constructing Bayesian networks includes combing data coming from different 

sources, for example, subjective expert opinion, clinical data, screening data, histopathologically 

verified data, or the data coming from the questionnaires.  This paper discusses knowledge 

engineering for constructing Bayesian network models along with the examples of these models 

for diagnostic and prognostic problems in medicine. 

Keywords:  Bayesian networks, knowledge engineering, medical diagnosis, medical 

prognosis 

 

I. INTRODUCTION 

 

The support of medical diagnosis and prognosis by computer-based tools has a long history 

with the first approaches proposed in the 1960s and 1970s (e.g., [1,2]).  The medical support 

systems developed during last decades were based on various approaches. Probabilistic 

graphical models, such as Bayesian networks, have proven to be powerful tools for modeling 

complex uncertain knowledge.  Bayesian network modeling has found its applications in both 

medical diagnosis and prognosis. There are quite a few examples of Bayesian network models 

developed to solve medical problems (e.g., [3,4,5,6]).  Knowledge engineering for building 

Bayesian networks includes knowledge elicitation from domain experts, transforming medical 

data into the framework of acyclic directed graph as well as, combining data coming from 

different sources such as subjective expert opinion with objective data.  This paper discusses 

knowledge engineering for constructing Bayesian network models along with the examples of 

these models for diagnostic and prognostic problems in medicine. 

 

 

II. METHODOLOGY 

 

Bayesian networks [7] are acyclic directed graphs that allow for modeling probabilistic 

dependencies and independencies among variables.  The graphical part of a Bayesian network 

reflects the structure of a modeled problem, while local interactions among neighboring 

variables are quantified by conditional probability distributions.  The structure of the directed 

graph represents a factorization of the joint probability distribution. For example, a Bayesian 

network encoding n variables: X1, X2,..., Xn, has the following factorization: 

 

P(X1, X2,..., Xn)= ∏(i=1,2,…n)( Xi |Pa(Xi)) 

 

where Pa(Xi) indicates parent variables of Xi.  Reasoning with Bayesian networks consists of 

a calculation of a posteriori probability for a target node given the information entered into 

observed nodes.  This probability can be farther interpreted as a probability of developing a 

disease given observed evidence.  Bayesian networks can reflect expert's understanding of the 
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domain, enhance interaction with a human expert at the model building stage, and are readily 

extendible with new information. 

 
Figure 2: Example of a Bayesian network model. 

 

Figure 1 captures an example of a Bayesian network that models a risk factor of cervical 

cancer and two tests used in cervical cancer screening: HPV and Pap tests.  Each of the arcs in 

the graph represents a probabilistic relationship between the connected variables.  Figure 1 

contains also the probability tables for two nodes: a prior probability distribution for the node 

Age and a conditional probability distribution for the node Pap test.  Assuming that Cervical 

cancer is a target node, we can calculate a posterior probability of developing cervical cancer 

given observed evidence that in this case is the information about a specific patient introduced 

into the nodes Age, HPV test, and Pap test.  The resulting posterior probability can be further 

interpreted as a risk of developing a cervical cancer. 

There exists a temporal extension of Bayesian networks, dynamic Bayesian network, offering 

a framework for explicit modeling of temporal relationships and is useful as both prognostic 

and diagnostic tool. 

 

III. RESULTS 

 

Knowledge engineering for building Bayesian networks includes knowledge elicitation from 

domain experts, transforming and incorporating the data coming from different sources into 

the framework of acyclic directed graph and quantifying it by means of conditional 

probability distributions.  The data sources can include, for example, expert subjective 

opinion, clinical data, screening data, histopathologically verified data, or the data coming 

from the questionnaires.  The knowledge engineer, who is responsible for building the model, 

has to be aware what is the data from and how to interpret the data. 

Building a Bayesian network model is an iterative process that consists of four main elements 

(see Figure 2).  The process begins with selecting the variables of a model. Then the 

qualitative and quantitative parts of a Bayesian network model are constructed. The fourth 

crucial element of the process includes model verification and evaluation.  

Qualitative and quantitative part of a Bayesian network can be built based on the expert 

knowledge, i.e., a graphical structure of the model along with its numerical parameters can be 

assessed based on the expert opinion.  This task requires much effort on the knowledge 

engineer part that is responsible for acquiring the knowledge from the expert.  Another 

method to build the network is based on a hybrid approach, where the structure of the model 

is assessed by the expert and the numerical parameters are learned from the data.  Yet another 
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approach to build a Bayesian network is to learn it automatically from the available data.  

There exist the algorithms to learn Bayesian network models from the data.  In any of the 

approaches knowledge engineer plays an important role.  Knowledge engineer should not 

only be trained in techniques that facilitate the process of knowledge acquisition but also 

should develop basic knowledge of the domain to establish a common language with experts.  

 

 

 
Figure 3: Iterative character of model building. 

 

Bayesian networks are often used in modeling diagnostic problems. We have built several 

diagnostic models. For example, HEPAR II, a model for diagnosis of liver disorders or the 

BPH model for diagnosis of benign prostatic hyperplasia [8].  To build these models we have 

used a hybrid approach, i.e., a graphical part of the model was elicited based on expert 

opinion while the conditional probability distributions were learned from collected clinical 

data.  Another diagnostic Bayesian network model was built to determine whether 

adenocarcinoma present in a biopsy or curettage is of endometrial or endocervical origin [9]. 

To build this model we have used immunohistochemical profile data. Yet another diagnostic 

model, AutismNET, was constructed based on expert knowledge, i.e., the graphical structure 

and numerical parameters were elicited from domain experts. The AutismNET model 

supports early diagnosis of autism and is dedicated to parents [10].  

We have developed the Pittsburgh Cervical Cancer Screening Model for risk assessment. The 

model is a dynamic Bayesian network and was built based on the cervical cancer screening 

data collected over the period of 11 years.  This prognostic model allows for individualized 

management of patients and computes patient-specific risk based on the patients 

characteristics, history data, and screening test results [11].  Another prognostic model was 

built based on screening, histopathological, and clinical data [12]. The model allows us to 

predict a risk of atypical endometrial hyperplasia and endometrial carcinoma. The aim of the 

model was to limit the number of performed endometrial biopsies based on clinical and 

screening data. 

An important part of Bayesian network modeling is also discovering probabilistic 

relationships from data.  Given data coming from the questionnaires we have built a Bayesian 

network that models risk factors and effects of dental caries in three year old children.  The 

model includes over 30 variables and identifies risk factors of dental caries [13].  For 

example, the model has confirmed that cleaning teeth is a leading factor in preventing dental 

caries in three year old children. 
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IV. CONCLUSION 

 

Bayesian networks are powerful tools for modeling uncertain and complex medical 

knowledge. These models offer a framework for explicit modeling of probabilistic 

relationships and are useful as both prognostic and diagnostic tools.  Knowledge engineering 

for building Bayesian network models includes transforming and incorporating the knowledge 

from experts and existing data into the framework of probabilistic graphical model.  

Knowledge engineer is responsible for this elaborate and time consuming process.  

Furthermore, a knowledge engineer should be familiar not only with the techniques that 

facilitate the process of knowledge acquisition from the domain expert or the data, but should 

also develop basic knowledge of the domain to understand it and to establish a common 

language with experts. 
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Abstract.  

Data mining techniques based on minimization of the convex and piecewise linear (CPL) 

criterion functions can be used among others for extraction of collinear (flat) patterns 

from large, multidimensional data sets. New method of biclustering can be also developed 

by using this technique. Properties of such collinear biclustering are analyzed in the 

presented paper. 

Keywords: data mining, flat patterns,  CPL criterion functions, biclustering 

I. INTRODUCTION 

Clustering techniques are used in data mining tasks to extract patterns from large, 

multidimensional data set [1]. An extracted pattern is expected to have a form of subset 

(cluster) of feature vectors characterized by a certain type of regularity.  Biclustering 

procedures should allow to extract not only clusters of feature vectors but also subsets of 

features specific for a particular pattern [2]. Biclustering techniques are developed intensively 

at present for the purpose of genomic data analysis. 

 

We are considering biclustering aimed at extraction of collinear patterns in selected feature 

subspaces. The collinear (flat) pattern can be observed if a large number of feature vectors 

from the given data set is located on a such hyperplane. Collinear patterns can be extracted by 

omission of some feature vectors (objects) from the data set combined with neglecting certain 

features xi from the feature space [3]. 

II. DATA SET AND DUAL HYPERPLANES IN PARAMETER SPACE 

Let us the data set C[n] contains m feature vectors xj[n] = [xj,1,...,xj,n]
T 

belonging to a given n-

dimensional feature space F[n] (xj[n]  F[n]): 

 C[n] = {xj[n]},  where  j = 1,...,m    (1) 

Components xji of the feature vector xj[n] can be treated as the numerical results of n 

standardized examinations of a given object (patient) Oj (xjior xjiR).  

Each of m feature vector xj[n] from the set C[n] (1) defines the below dual hyperplane hj in 

the parameter space R
n
 (w[n] R

n
): 

 

                        (xj[n]  C[n])        hj =  {w[n]: xj[n]
T
w[n]  =  1}         (2) 

 

 Each of n unit vector ei[n] = [0,…,1,…,0]
T
 in the n-dimensional feature space F[n] (ei[n]  

F[n]) defines the below dual hyperplane hi
0
 in the parameter space R

n
: 

                 

         (i{1,…,n})    hi
0  

= {w[n]: ei[n]
T
w[n] = 0} = {w[n]: wi = 0}     (3) 
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The set Sk of nk (1 nk  n) feature vectors xj(i)[n] (j(i)Jk) and n - nk unit vectors ei(i)[n] 

(i(i′)Ik) allows to define the below matrix Bk[n]:   

 

                  Bk[n] = [xj(1)[n],...,xj(nk)[n],ei(nk+1)[n],...,ei(n)[n]]
T 

                    (4) 

 

If the matrix Bk[n] (4) is nonsingular, then it is called the k-th basis. The basis Bk[n] allows to 

compute the k-th vertex wk[n] through the below equation []:  

 

                 wk[n] = (Bk[n]
T
)
--1

1′[n]                                                             (5) 

 

where the vector 1′[n] = [1,...,1,0,...,0]
T
 has the components equal to 1 or to 0 adequately to 

the feature vector xj(i)[n] (j(i) Jk) or to the unit vector ei(i)[n] (i(i) Ik).  

 

The vertex wk[n] (5) is the intersection point of the hyperplanes hj (2) and  hi
0  

(3) defined by 

elements xj(i)[n] (j(i)Jk) and ei(i)[n] (i(i) Ik) of the set Sk (4) []. 

 

Remark 1: Each of nk dual hyperplane hj(i) (2) defined by the basic feature vector xj(i)[n] 

(j(i)Jk) (4) passes through the vertex wk[n] (5): 

 

                (j(i)Jk (4))   wk[n]
T
xj(i)[n] = 1                                               (6) 

 

Remark 2: Each of n - nk dual hyperplane hi
0
 (3) defined by the basic unit vector ei(i)[n] (i(i) 

Ik)(4) passes through the vertex wk[n] (5): 

 

               (i(i) Ik (4))   wk[n]
T
ei(i)[n] = 0                                             (7) 

 

Each component wk,i(l) of the vertex wk[n] = [wk,1,...,wk,n]
T 

(5) linked to the unit vector ei(l)[n] 

in the basis Bk[n] (4) is equal to zero (wk,i(l)  = 0) as it results from (7). 

 

Definition 1: The rank rk (1 rk n) of the vertex                           wk[n]
 
= [wk,1,...,wk,n]

T 
(5) 

is defined as the number of such components wk,i which are different from zero (wk,i ≠ 0).   

Definition 2: The vertex wk[nk] (5) is degenerated if and only if more than rk dual  

hyperplanes hj (2) passes through this vertex in the parameter space R
nk

.  

Definition 3: The degree of degeneration dk of the vertex wk[nk]
 
(5) is defined in the below 

manner: 

                                   dk = mk - rk                                                            (8) 

where mk is the number of such feature vectors xj[n] from the data set C[n] (1), which define 

the hyperplanes hj (2) passing through this vertex (wk[n]
T
xj[n] =  1).  

III.  CONVEX AND PIECEWISE LINEAR (CPL) CRITERION FUNCTION  

 The CPL penalty functions j(w[n]) are defined on the feature vectors xj[n] (xj[n]  F[n]) 

from the data set C (1) [3]: 

 

  (xj[n]  C (1))                            1 - w[n]
T
xj[n]    if   w[n]

T
xj[n] 1 

j(w[n]) = |1 - w[n]
T
xj[n]|  =                                                           (9) 

                                                         w[n]
T
xj[n] – 1   if   w[n]

T
xj[n] 
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The k-th criterion function k(w[n]) is determined as the weighted sum of the penalty 

functions j(w[n]) defined on the feature vectors xj[n] from the data subset Ck[n] (1): 

 

k(w[n]) =   jj(w[n])                                              (10) 

                                         
iJk

 

where Jk = {j: xj[n] Ck[n]   C[n] (1)} and the positive parameters j (j ) in the below 

function k(w[n]) can be treated as the prices of particular feature vectors xj[n]. The standard 

choice of the parameters j values is one (j = 1.0).  

 

It can be proved that the minimal value of the  convex and piecewise  linear criterion function 

k(w[n]) (10) can be found in one of the vertices wk[n] (5): 

 

             (wk
*
[n])   (w[n])   k(w[n])   k(wk

*
[n]) =  k

*
  0          (11) 

 

The basis exchange algorithms which are similar to the linear programming allow to find 

efficiently the minimal value k(wk
*
[n]) of the criterion functions k(w[n]) (10) even in the 

case of large, multidimensional data subsets Ck[n] [4].  

 

The hyperplane H(w[n], ) in the feature space F[n] is defined as follows: 

                         H(w[n], ) = {x[n]: w[n]
T
x[n] = }                             (12) 

where x[n] is the feature vector (x[n] F[n]), w[n] is the weight vector (w[n] R
n
) and  is 

the threshold (  R
1
). 

 

Theorem 1: The minimal value k(wk
*
[n]) (11) of the criterion function k(w[n]) defined (10) 

on elements xj[n] of the subset Ck[n]              (Ck[n]  C[n] (1)) is equal to the zero 

(k(wk
*
[n]) = 0), if and only if all the feature vectors xj[n] from this subset are situated on 

some hyperplane  H(w[n], ) (12) with ≠ 0. 

Proof: Let us suppose that all the feature vectors xj[n] from the subset Ck[n] are situated on 

the hyperplane H(w[n],) (12) with   0: 

 

                        (xj[n]Ck[n])   w[n]
T
xj[n] =                                 (13) 

From this  

                        (xj[n]Ck[n])   (w[n] /)
T
xj[n] = 1                        (14) 

 

The above equations mean that functions j(w[n] /)  (9) are equal to zero in the point 

(w[n] /):  

   

          (xj[n]Ck[n])       j(w[n] /)  = 0         so (10)                  (15) 

                                          k(w[n] /) =  0                                    (16) 

 

On the other hand, if the criterion function k(w[n]) (10) is equal to the zero in some point 

w[n], then each of the penalty functions j(w[n]) (9) has to be equal to zero:      

 

                                          (xj[n]Ck[n])   j(w[n]) = 0                  (17) 

or 

                                          (xj[n]Ck[n])  w[n]
T
xj[n] = 1                (18) 
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The above equations mean that each feature vector xj[n] from the subset Ck[n] is located on 

the hyperplane H(w[n], 1) (12). � 

 

Remark 3: If all the feature vectors xj[n] from the subset Ck[n]      (Ck[n]  C[n]  (1)) are 

located on the hyperplane H(w'[n],') (12) with '≠ 0, then the minimal value k(wk
*
[n]) (12) 

(k(wk
*
[n]) = 0) is located in the optimal vertex wk

*
[n] = w'[n] / '. 

The above Remark can be justified on the basis of the proof of the Theorem 1. 

IV.  VERTEXICAL PLANES AND LINES IN FEATURE SPACE 

The k-th vertexical plane in the feature space F[n] is defined by using the basic feature 

vectors xj(i)[n] belonging to the basis Bk[n] (4) which is linked (5) to the vertex  wk[n] [3]:  

Pk(xj(1)[n],…,xj(nk)[n]) =  {x[n]: x[n] = 1xj(1)[n] +…+ nkxj(nk)[n]} (19) 

where the nk parameters i(i  R
1
) fulfill the below condition: 

             1+…+ nk= 1        (20) 

Remark 4: The dimension of the plane Pk(xj(1)[n],…,xj(nk)[n]) (19) is equal to  nk – 1. 

 

Remark 5: The vertexical plane Pk(xj(1)[n],…,xj(n)[n]) (18) with the n basic vectors xj(i)[n] is 

such hyperplane H(wk[n],1) in the  n - dimensional feature space F[n] which can be defined 

by the equation (12) with the k-th vertex wk[n] (5) and the threshold   = 1. 

 

Remark 6: None of the vertexical planes Pk(xj(1)[n],…,xj(nk)[n]) (19) passes through the point 

zero 0[n] (origin).     

 

Theorem 2: The feature vector xj[n] (xj[n] F[n]) defines such dual hyperplane hj (2) which 

passes through the vertex wk[n] (5) supporting the vertexical plane Pk(xj(1)[n], …,xj(n)[n]) (19) 

if and only if the vector xj[n] is situated on this plane.  

 

The proof of a similar Theorem can be found in the paper [3]. The Theorem 2 gives  the link 

between the degeneracy (Definition 2) of the vertex wk[n] (5) and the location of feature 

vectors xj[n] on the vertexical plane Pk(xj(1)[n],…,xj(n)[n]) (19).  

V.  EXTRACTION OF COLLINEAR BICLUSTERS 

The minimal values k(wk
*
[n]) (11) of the criterion functions k(w[n]) defined (10) on 

elements xj[n] of the subsets Ck[n] (Ck[n]  C[n] (1)) have the below property [3]: 

 

The monotonocity property:                                                              (21) 

The removal of such a feature vector xj[n] from the data subset Ck[n] which is 

characterized by the positive value j(wk
*
[n]) of the penalty function j(w[n]) (9) in 

the optimal vertex wk
*
[n]  (11) causes a decrease of the minimal value k

*
 (11) to k

*
: 

 

                                          k
*
 -  k

*
   j(wk

*
[n])  0                  (22) 

 

where the symbol k
* 

stands for the minimal value (11) of the criterion function k(w[n]) 

(10) defined on the elements xj[n] of the of the reduced set Ck[n] / xj[n]. 
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A gradual removal of mk feature vectors xj[n] with the highest values j(wk
*
[n]) (21) from 

the data subset Ck[n] allows to form the reduced data subset Ck[n]: 

            Ck[n] = Ck[n] /  j xj[n]  =  {xj[n]: j Jk′}                           (23) 

where Jk′ (Jk′  {1,...,m}) is a subset of the mk indices j of the feature vectors xj[n]. 

The number mk of the neglected feature vectors xj[n] should be sufficient to achieve the 

below condition (11): 

        min  k(w[n]) = k(wk
*
[n]) =  k

*
 =  0                                  (24) 

We can infer on the base of the Theorem 1, that the condition (24) results in a location of all 

vectors xj[n] from the reduced set Ck[n]  on the hyperplane H(wk
*
[n],) (12): 

          Ck[n] = Ck[n] /  j xj[n]  =  {xj[n]: j Jk′}                             (25) 

where Jk′ (Jk′  {1,...,m}) is a subset of the mk indices j of the feature vectors xj[nk]. 

             (xj[n] Ck[n])   (wk
*
[n])

T
xj[n] = 1                                    (26) 

The minimization (11) of the criterion functions k(w[n]) (10) defined on elements xj[n] of 

the subsets Ck[n] (23) allows to find the vector wk
*
[n] = [wk,1

*
,...,wk,n

*
]

T 
(11).  The optimal 

vertex wk
*
[n] of the rank rk (Definition 1) can be used to the identification of the rk - 

dimensional feature subspace Fk[rk]   F[n]: 

The k–th feature subspace Fk[rk] is composed of such rk features xi  (iIk) which are linked 

to the such optimal weights wk,i
*
 (11) which are not equal to zero (wk,i

*
  0). The reduced 

feature vectors xj[rk] (xj[rk]Fk[rk]) are obtained from the feature vectors xj[n] (xj[n]  F[n]) 

(1) through neglecting of the n - rk components xj,i linked to the weights wk,i
*
 equal to zero 

(wk,i
*
 = 0) similarly as in the RLS method of feature selection [4]: 

 

   (i  {1,...,n})                                                                                (27) 

  wk,i
* = 0   the component xj,i is reduced in all m feature vectors 

                   xj[n] = [xj,1,...,xj,n]
T from the data set C[n] (1) and     

                   the i-th feature xi is reduced from the feature space F[n] 
 

Definition 5: The set Ck[rk] = {xj[rk]: j Jk′ (25)} of the mk reduced feature vectors xj[rk] has 

the form of collinear bicluster of the rank rk if and only if each of these vectors xj[rk] 

is located on the vertexical plane Pk(xj(1)[rk],…,xj(nk)[rk]) (19), (20). 

If the number mk of the elements xj[nk] of the bicluster Ck[nk] is a sufficiently high, then these 

elements form the collinear (flat) pattern in the feature subspace Fk[rk].  Detection of flat 

patterns on the plane and in three-dimensional space has a rich tradition in computer vision. 

The Hough transformation is traditionally used for this purpose [6]. 
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Abstract 

A general learning rule, "BCM-δ", is proposed that subsumes both unsupervised learning as a 

form of the BCM rule (Bienenstock, Cooper, Munro, 1982; Munro, 1984) and the delta rule 

(Rosenblatt, 1958; Rumelhart, Hinton, and Williams, 1986).  The "BCM-δ" unit is composed of 

two subunits, T and L, each integrating distinct input streams across distinct sets of synapses.  

The two subunits follow a common Hebb-like learning procedure that reduces to an 

unsupervised rule for the T subunit and a supervised rule for the L subunit in which the T 

response is the training signal.  This model suggests a neurally plausible mechanism for the 

shaping of concepts by labels. 

Keywords:  concept learning, connectionism, neural model  

 

I. INTRODUCTION 

 

Supervised Learning using the Delta Rule 

Error driven synaptic learning rules are typically written in a "Hebb-like" form with a 

postsynaptic factor that has a positive (target) term and a negative (response) term.  The delta 

rule (eg., Rosenblatt, 1960; Widrow and Hoff 1960; Rumelhart, Hinton, and Williams, 1986) 

has this property; see Eq. (1).  Here, wij is the weight of the synapse connecting stimulus sj to 

unit i, and the postsynaptic factor δi is expressed as the difference between the desired 

response di and the linear response ri; i.e. i ij jr w s   The step size or learning rate is 

signified by . 

  

     ,  where ij i j i i iw s d r   (1) 

 

Unsupervised Learning using the BCM Rule 

Bienenstock, Cooper, and Munro (1982) developed a synaptic modification rule to describe 

the development of ocular dominance and orientation selective cells in visual cortex.  Like the 

delta rule, the BCM rule has a Hebb-like form.  A modified version by Munro (1984) is given 

in Eq. (2) in terms of two bounded montone increasing functions +
 and -, where +

 

increases more slowly than - ; the precise condition is given in Munro (1984) as a theorem. 

 

  

 



  
 

 

  

 

2

where ( , ) ( ) ( )

ij w i j

i q i i

i

w s

q r q

r q r q r

  (2) 

Oppositional Mechanisms 
Both the unsupervised rule in Eq. (2) and the delta rule (1) are specific cases of a more 

general framework for synaptic learning; see Eq. (3), in which the postsynaptic factor is the 

difference between two terms.  

    ij i i jw P N s   (3) 
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The function suggests that there are separate oppositional associative mechanisms for 

strengthening synapses and weakening synapses, resulting in LTP when Pi>Ni and LTD 

otherwise.  In the case of the delta rule, Pi is the training signal and Ni is the response, while 

in Equation 4, both terms are functions of the response ri. 

 

II. A UNIFIED FRAMEWORK 

 

Consider a hypothetical neuron with multiple loci for accumulating PSPs from different parts 

of the dendritic complex.  Here, two subunits labeled T and L are stimulated by different sets 

of stimuli s
T
 and s

L
 which are incident on the cell on separate sets of afferents, with 

corresponding synaptic efficacy vectors w
T
 and w

L
. 

 

The two subunits compute separated weighted sums r
T
 and r

L
 (Eq 4).  The pyramidal cell type 

is a prime candidate for this kind of unit (Fig 1). 

 

 


 ( ) ( ) ( )   where { , }X X X
i ij j

j X

r w s X T L   (4) 

In this section, a self-supervised learning rule is presented.  The T subunit synapses are trained 

according to the version of BCM in equation (2).  The partial response from the T unit drives 

the P term for the L subunit learning procedure; thus, the L follows a form of the delta rule 

with r
T
 determining the training signal for L.  The self-supervised procedure operates by 

selecting a specific region of the T stimulus space.  Subsequently, the L subunit is trained to 

give a partial response that can be interpreted as predictive of the preferred T stimulus given 

the L stimulus. 

 

Fig 1:  The pyramidal cell morphology as a model for the self-supervised framework.  The 

two hypothetical partial responses could be integrated on mutually exclusive sets of afferents, 

such as those the apical dendrites and the basal dendrites. 

 
   



  

  

( ) ( ) ( ) ( ) ( )
1 2

( ) ( ) ( )

( , ) ( , )

( )

X T T X X
ij w i i i j

T T T
i q i i

w r h q r h s

q r q
  (5) 

Both sets of weights have the same P term driven by the T subunit and have N terms that are 

functions of their respective partial responses (Equation 5).  This dynamical system suggests 

that a single synaptic modification based on oppositional mechanisms can subsume both 

unsupervised selectivity across a set of stimuli which can in turn drive a supervised learning 

procedure. 

III. SIMULATIONS 

Two scenarios are simulated: without T inputs and with T inputs.  The L stimulus space is 

meant to simulate some primitive sensory space like visual space.  The scenarios are therefore 

meant to compare concept learning with and without language. 

Apical Dendrite 
(T-subunit) 

Basal 
Dendrites (L-subunit) 

 
 

r
(S)

  

 

r
(T)
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Pattern Sets 

The five patterns to the T subunit are nonorthogonal but linearly independent -- see Fig 2 

(left).  Input patterns to the L subunit are drawn from a set of 500 patterns in 10 clusters of 50 

patterns.  The first two prinipal compornts of the 500 patterns are shown in Fig 2 (right).  The 

prototype vectors (larger circle) are randomly generated, with small random numbers added to 

each component.  

 

Fig 2:  A PCA plot of the 10 clusters.  The large spots are the prototype vectors.  The color 

coding refers to the pairing with the five patterns from the T stimulus space for Experiment 2. 

Experiment 1.  L inputs alone. 

In the first set of simulations the L subunit is trained without input to the T subunit.  In every 

case, the subunit becomes responsive only to patterns from one of the 10 clusters.  This 

demonstrates clustering by the unsupervised learning rule acting alone. Within cluster 

responses are tight, and responses to the selected cluster are well separated from the other 

clusters (Fig 3).   

 
Fig 3:  The box plot shows L subunit response profiles of 5 separately trained units to 20 

patterns generated independently of the training set in each of 10 clusters without input to the 

T subunit. 

Experiment 2.  Joint input to both T and L 

Here, inputs are presented to the T pattern set.  The learning rule drives the T-subunit to 

choose one of the five patterns.  Each pattern in this set is statistically correlated with two of 

the clusters from the L pattern set.  These disjoint clusters are assigned independently to the T 

subunit patterns, and each "category" consists of two disjoint clusters with no similarity 

structure among the prototypes.  The five pairs of clusters are color coded in Fig 2 (right).  In 

Fig 4, the results of 5 simulations are displayed.  The ordering in the Figure is pairwise to 
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highlight the responses of the simulated cell to the T pattern (green bar graph) and the 

associated clusters. 

 

Fig 4:  The box plots show L subunit response profiles of 5 separately trained units to 20 

patterns generated independently of the training set in each of 10 clusters with input to the T 

subunit.  Note that each cell becomes reposnisive to patterns from two of the clusters.  The 

green bargraph shows the response to the 5 patterns from the T subunit.  Note that one pattern 

of the 5 is chosen from the set, corresponding to the two associated clusters. 

 

IV. DISCUSSION 

This paper has demonstrated a system by which stimuli from one modality can shape the 

response properties of a unit to another modality using a framework that is biologically 

plausible and gives clues to the source of a teaching signal for supervised learning.  This may 

lead to a neuron level explanation of the process by which language shapes cncept formation. 
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Abstract 

Practical methodology for combining BMI and WHR into single variable with use of principal 

component analysis was proposed. Exemplary analyses were based on sample of N=92 children 

aged 14-15 years.  

Keywords:  principal components, Spearman, Kendall, overweight, BMI, WHR  

 

 

I. INTRODUCTION 

 

Development of strategies for counteraction against overweight, particularly among children, 

constitutes challenging problems in public health, [1, 2]. Besides, prospective study, [3], 

completed at N=2895  participants, supported hypotheses that waist to hip ratio (WHR) and 

waist to stature ratio (WSR) can be better risk factors for some illness than body mass index 

(BMI). Then, it is well-known that the BMI and WHR are correlated very significantly, [4]. 

For all these reasons, the current study was concerned on developing  practical methodology 

for proper measuring obesity at children. In consequence it was proposed to combine BMI 

and WHR into a single variable with use of principal component analysis.  

Principal component analysis is well-known technique for replacing original variables with 

smaller number derived variables, named principal components, [5]. For data-sets drawn from 

2-dimensional normal distribution all computations are particularly uncomplicated, they can 

be made with any calculator or  spreadsheet. In real-world circumstances some complications 

can arise with non-linear relationships and weighty departures from normality, [6]. However, 

with respect to departures from 2-dimensional normality, the difficulty can be pass over with 

use of  rank correlation methods, [7], with proper caution, [8]. Tests of significance of 

correlation coefficients based on the ranks can be computed with formulas (1) and (2). Both 

statistics are approximately standard normal for large samples. 

 

Z
2
 = (N – 2)R

2
/(1 – R

2
)           (1)  

Z
2
 = T

2
(4.5N(N – 1))/(2N + 5)        (2) 

where:  Z – standard normal variable; N – number of pairs of data; R, T – Spearman and 

Kendall coefficient of rank correlation, respectively, [7].  

 

The next difficulties arise with psychological problems connected with obesity, [1, 9, 10]. 

Consequently, in current study focus was put also on self-esteem and allusions from 

environment. 

 

II. METHODOLOGY  

 

Participants of this study, N=92 children , included N = 35 boys and 57 girls were 

recruited at 2013 year in two schools in Krakow, Poland. The only inclusion criterion was 
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age, 14-15 years. All candidates invited to study didn’t refuse. Body mass index (BMI) and  

waist-hip ratio (WHR) were measured by trained health professionals. Participants reported 

on their behavior and adherence to weight control using questionnaire, briefly presented in 

Table 1., [11]. 

 

Table 1. The predictors under consideration  

item variable Likert scale 

1 Gender 1=female; 2=male 

3 Dwelling-place 1=town; 2=country   

4 School 1=ordinary; 2=sporting   

7 Self-esteem  

1=No, I’m too underweight; 2=No, I’m somewhat 

underweight;  3=No, normal; 4=Yes, overweight; 5=Yes, too 

overweight  

8 Contentment  1=Yes, I like my silhouette; 2=No, I don’t 

9 Anxiety  1=Yes, I’m anxious about my weight ; 2=No, I don’t  

10 Fitness    1=Yes, I practice exercises against obesity; 2=No, I don’t  

14 Diet  1=Yes, I practice diet against obesity; 2=No, I don’t  

12 Allusions  1=Yes, I hear allusions about my silhouette; 2=No, I don’t 

13 Self-efficacy 1=No, I’m submissive to persuasion ; 2=Yes, I don’t  

21 Knowledge 1=Yes, I’m convinced: obesity injures health; 2=No, I don’t  

33 BMEE 
1=Yes, I very often have BMEE (Between Meal Eating 

Episodes); 2=Yes, rarely; 3=No, seldom; 4=No, very seldom   

36 Fast-food 

1=No, I don’t eat fast-foods; 2=Yes, not rare than  once a 

month; 3=Yes, 2-3 times per month; 4=Yes,  once a week; 

5=Yes, rarely than once a week; 6=Yes, everyday  

 

Descriptive statistics of BMI and WHR except conventional N, mean, and standard deviation 

SD, included median and skewness, with aim to support normality of distributions. Rough 

values of BMI and WHR were transformed to distributions with mean=0 and SD=1 with use 

of formula (3). Linear regression BMI=f(WHR) models were calculated separately for boys 

and girls subgroups, for rough data and for transformed data. 

 

xN = (x – mean(x))/(SD(x).          (3)  

where: x, xN -  transformed variable before and after transformation. 

 

Principal components, U and W, were estimated with well-known formulas (4) for samples 

drown from 2-dimensional standard normal distributions, (mean1=mean2=0, SD1=SD2=1; R), 

where: mean1, mean2, SD1, SD2 – parameters of normal distributions of BMIN and WHRN, 

respectively, and R – coefficient of Pearson’s correlation between them.    

 

U = BMIN + WHRN; V = BMIN - WHRN;        (4)  

where: BMIN, WHRN – standardized BMI and WHR, respectively. 

 

Three variables (Self-esteem, BMEE, and Fast-food) were considered as depended variables 

in linear regression models, with predictors: first principal factor U, Allusions, Knowledge, 

and Dwelling-place.  
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III. RESULTS 

 

Linear regression between BMI and WHR was significant evidently. At boys subgroup 

statistics F=19.4 (p=0,0001) for rough data, and F=20.1 (p=0,0001) for standardized data. At 

girls subgroup statistics F=104.7 (p<0,0001) for rough data, and F=7098.4 (p<0,0001) for 

standardized data.   

Table 2. presents descriptive statistics of BMI and WHR.  

Table 2. Descriptive statistics of BMI and WHR 

BMI WHR 

parameter boys girls parameter boys girls 

N 35 57 N 35 57 

median 20,7 19,5 median 0,42 0,41 

mean 20,9 20,1 mean 0,44 0,42 

SD 2,96 2,98 SD 0,05 0,04 

Skewness  1,28 1,13 Skewness 0,99 0,82 

N – number of participants; SD – standard deviation; Skewness - Fisher-Pearson coefficient  

 

 
 

Fig. 1. Dependence BMI=f(WHR) at boys and girls subgroups. 
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Table 3. presents distributions of categories of BMI in the study group, based on [12].   

 

Table 3. Categories of BMI.  

BMI underweight normal overweight obese Total 

girls 7 39 8 3 57 

boys 0 30 2 3 35 

Total 7 69 10 6 92 

 

Table 4. presents values of coefficients of determination, estimated with linear regression 

separately for boys and girls subgroups.  

 

Table 4. Coefficients of determination for principal components.  

group V(U) V(W) V(U)/2 V(W)/2 

boys 1.61 0.39 80.5% 19.5% 

girls 1.81 0.19 90.5% 9.5% 

U, W – first and second principal components; V(U)/2, V(W)/2 – expressed in % from 2. 

 

 
 

Fig. 2. Principal components at boys and girls subgroups.  
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Table 5. presents main results of current study: significance of hypotheses that Self-esteem, 

BMEE, and Fast-food depends on: principal factor U, Allusions, Knowledge, and Dwelling-

place.  

 

Table 5. Significance of influence of selected predictors on Self-esteem BMEE, Fast-food intake.  

predictor group U  Allusions Knowledge Dwelling-place 

Self-esteem 
boys p < 0,00001 - - - 

girls p < 0,00001 p = 0,047 - - 

BMEE  
boys p = 0,003 p = 0,03 - - 

girls - - - - 

Fast-food 
boys p = 0,047 - - - 

girls - - - - 
Self-esteem – approval of own weight; BMEE – frequency of Between Meal Eating Episodes;  
Fast-food -   frequency of fast-food consumption; p – significance of linear regression coefficient.  
 

IV. DISCUSSION 

 

Use of BMI and WHR joined into a single principal component can explain 80.5% of 

variability at boys, and 90.5% at girls, instead of only 50% explained with a single variable.  

It was stated that in study group, besides factual weight and silhouette, only allusions from 

some people can significantly influence health behaviour of children aged about 14-15 years.     

 

V. CONCLUSION 

 

Practical advantages of the proposed methodology were demonstrated on exemplary data on 

BMI and WHR at children aged about 14-15 years. 
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Abstract 

The usefulness of combining methods was examined on the example of microarray Colon data 

set, where expression levels of huge number of genes are reported. Discrimination problem into 

tumor and normal cases is examined. Cross-validation errors evaluated on half of whole data 

set, not used for selection of genes,   were applied as measures of classifier.  Frequent procedures 

of single selection of genes: Prediction Analysis of Microarrays (PAM )  and  Significance 

Analysis of Microarrays (SAM) were compared to different ensembles not including these 

selection results. Combining of genes selection methods was not essential in comparison to single 

PAM or SAM selection for any examined ensemble of classifiers.  

On the other hand, combining the five classifiers: k nearest neighbours, SVM linear and SVM 

radial with parameter c=1, Shrunken Centroids Regularized Classifier and nearest mean 

classifier, significantly outperformed the resampling classifiers like bagging, double bagging or 

random forest.   The previous step of combining ranking of variables was not essential for the 

performance for all examined ensembles of classifiers. 

Keywords: combined methods, discriminant analysis,  genes selection 

 

I. INTRODUCTION 

 

Because of the high number of investigated genes in one microarray, the pre-selection of 

features for inclusion into the classification rule is essential. Often, only a few tens of genes 

are really active; the remaining genes are not important for improvement of the discriminant 

procedure. In supervised classification, the variables with the biggest discriminant power are 

sought out.  

 For classification problems occurred for microarray data sets, typically bagging or 

boosting  combined classifiers are applied. Ensembles of classifiers based on resampling, like 

bagging or boosting might improve stability. Those methods may be called the families of 

classifiers. Families are considered as homogenous ensembles, because all base classifiers that 

are merged in one decision, are of the same type, but are created on slightly different subsets 

(random subsets).  

 Ensemble of selection methods may also benefit in outcome ranking of the most 

discriminating genes. Thus, the usefulness of combining was examined for dimension 

reduction and also for building classifiers stage and for jointly both of them. 

 

II. METHODOLOGY 

In the Colon data set, containing expression levels of  2000 genes (variables) with 62 cases 

(patients), 40 tissues out of 62 are colon tumor tissues and 22 are normal.  The whole Colon 

data set, was randomly divided into two subsets with similar number of patients G and D. 

Thus G, the subset of Colon data set has 2000 genes and  32 patients, where 20   are tumor 

cases. The data set was standardized by subtracting a gene average and dividing by a standard 
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deviation. For each discriminating problem, the first subset G, was applied for a selection of 

the most discriminating genes. The second independent set D of 30 patients included 20 tumor 

patients and it was used to assess generalization properties of selected subsets of genes. 

Subsequently, D set was divided into k=10 cross-validation subsamples and the 10 cross-

validation error of discriminant functions was calculated. Cross-validation error, evaluated on 

D subset of whole data set, was the criterion for comparisons between correctness of selection 

procedures and classifiers. 

Subsequent subsets of genes are increasing and include all genes selected in the 

previous set. Thus, after the selection, the variables are ranked according to the selection 

criterion. Selection criterion is connected with the discriminant power of variables set.  

Different reduction methods of dimension were applied. Single selection methods were: SAM 

(Significance Analysis of Microarrays) and PAM (Prediction Analysis of Microarrays). 

Ensemble of selection not including SAM and PAM were constructed and compared to single 

SAM and PAM.  The sequence of genes indicates also the decreasing ranking. The genes are 

ranked from 1 to 100 and those sets are next applied for evaluation of examined classifiers 

errors.  

To find relevant genes in another way, the variables selection of different nature was 

considered for merging into one ranking effect. The base rankings for combining are obtained 

according to Gini impurity measure, between to within groups ratio (BetweenWithinRatio), T 

and Wilcoxon test with Hochberg adjustment for multiplicity (denoted by Hochberg, 

HochbergWilc, respectively).  Adjusted p–values for multiple testing procedures were also 

applied in permutation testes and permutation Welch T and Wilcoxon rank-sum tests are 

incorporated into the ensemble ranking. The permutation algorithm for the maxT and minP 

procedures is described in [1], and according to above information, the base selection methods 

are denoted as PermutAdjPmaxT, PermutAdjPminP, PermutAdjPmaxTWilcox, 

PermutAdjPminPWilcox.  Such obtained merged rankings were investigated to compare with 

single SAM and PAM procedures.  

Ensemble of variables selection procedure introduces the weight ranking of genes 

using base selection methods ranking in the way that higher joint ranking obtains a gene that 

occurs prior to others in most of combined base rankings. For sets, with increasing number of 

variables, the cross-validation classification errors are calculated, so classifier evaluation 

curves may be plotted for these values.  Subsequent subsets of genes of increasing sizes from 

1 to 100 are obtained for each classifier, so various discriminant methods are compared for 

ascending number of genes.  

Because the number of considered variables can even reach 100, the classical 

discrimination fails for applied CV procedure constructed from D set.  Thus, discriminant 

functions viable for high dimensionality were considered for merging. Various procedures 

have been discussed as alternatives to classical discriminant analysis. Some of them are: 

Shrunken Centroids Regularized Discrimination [2], k nearest neighbors discrimination 

(kNN), the uncorrelated linear discrimination and Support Vector Machines [3]. 

 The Support Vector Machines (SVM) provides an optimally separating hyperplane in 

the sense that the margin between two groups is maximized.  In the work, SVM [3] with 

linear kernel and also radial kernel was incorporated into classifiers ensemble and parameter 

c=1 was applied. Also k nearest neighbour (kNN) discriminant function was built into the 

ensemble. In kNN, the number of neigbours is optimized according to cross-validation error. 

Shrunken Centroids Regularized Discriminant Analysis [2] was also added to the ensemble. 

The last, fifth base classifier incorporated into the ensemble is a special case of linear 

diagonal (uncorrelated) discriminant function, assuming equal variances of genes, (i.e. nearest 
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mean classifier). Ensemble classification method is the classifier merging results of base 

classifiers, because those constituent methods are different in methodology, the majority vote 

was used for joint decision. The final joint classifier is heterogeneous, so is named in the work 

Heterogeneous Merge and denoted by HeterMerge2. 

Researchers in classification tend to combine procedures, based on similar types or 

different base classifiers. Specifically, considerable attention has been paid lately to families 

of classifiers originating from two ideas: bootstrap aggregations and boosting. In the current 

work, the aggregation of classifiers constructed on data sets bootstrapping was applied. To 

this class belong typical bagging [4], modified double bagging with LDA and double bagging 

with SLDA [5]. Double bagging combine LDA (or singular LDA) and classification trees. 

  Also random subspace method use bootstrap aggregation with additional step of 

random selection of variables in each loop. Application of the decision trees gives the random 

forests procedure [6].  In the current work, random forests classifier is applied and 

accordingly, trees are also investigated as base classifiers in other bootstrap aggregation 

procedures like bagging, LDA double bagging and SLDA double bagging. 

 

III. RESULTS 

 

The misclassification rate assessment was completed for increasing number of variables: 2, 5, 

10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, and 100, because the usage of more than 100 

genes occurred to be not constructive.  For succeeding subsets of genes, ranked by the 

examined combined selection method, misclassification rates  of different classification 

methods were assessed.  The comparison of combined classifiers evaluation curves can be 

considered  on the base of  Fig. 1-4, where cross-validation technique of G set into 10 folds 

was used to assess generalization errors (Fig.1-4).  Methods of applied combined selection are 

presented on Fig 2 and 4, where 10-CV errors of classification methods for succeeding 

subsets of genes, ranked by combined selection methods, are given.  

Comparing Figures 1 and 2 with mean 10-CV erros with lines obtained by added and 

subtracted standard errors, we can observe  significant  outperforming  of  HeterMerge2 (solid 

line) over  typical bagging and double bagging. It is especially distinct for about 60 genes. For 

random forest the difference is also observed, but the benefit coming from application of 

heterogeneously merged classifier is not so apparent as for other homogenous ensembles 

(Fig.1-2).  The effect is hold for both single SAM selection  (Fig. 1) and as well for combined 

ranking from  Gini,  PermutAdjPmaxT,   PermutAdjPminP, PermutAdjPmaxTWilcox,  and 

PermutAdjPminPWilcox (Fig. 2). Comparing Figs. 1 and 2 we can see very similar  learning 

curves for single SAM selection and the selection ensemble.  
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Fig.1. CV errors of homogenous and heterogeneous combined classifiers after SAM selection.  
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 Fig.2. CV errors of homogenous and heterogeneous combined classifiers after selection obtained   by 

combined  ranking of  five procedures: Gini, PermutAdjPmaxT, PermutAdjPminP, 

PermutAdjPmaxTWilcox,  PermutAdjPminPWilcox. 

 

Apparent difference can be observed between Heterogeneous Merge and homogenous 

classifiers based on bootstrap aggregating, for example bagging, LDA and SLDA bagging and 

random forest for more than 50 genes.  For complement examination on the difference 

between Heterogeneous Merge and bagging, areas with standard errors were plotted (Fig. 3 

for single SAM selection procedure) and  Fig. 4 (for combined genes selection from  Gini,   

PermutAdjPmaxT,   PermutAdjPminP, PermutAdjPmaxTWilcox, ,PermutAdjPminPWilcox).  

The plots indicate significant difference between Heterogeneous Merge and bagging trees for 

50-80 genes on both Figures 3 and 4. However, comparing Fig. 3 and 4, we can conclude that 

there is no difference between single PAM selection and combined selection procedure for 

types of all combined classifiers. Considered ensembles of selection procedures are not 

beneficial in comparison to popular SAM and PAM,  but  only part of results are displayed on 

classifier evaluation curves  in the paper (Figs 1,3). Various ensemble techniques applied for 

selection of variables are not different according to evaluation by CV classification errors and 

additionally there is no essential difference between them and SAM or PAM selection. 
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Fig. 3. Ten- fold CV classification errors with standard errors of classification methods: merged 

classifier  (HeterMerge2 based on vote on k-nearest neighbour, regularized classifier, nearest mean  

classifier, linear SVM with c=1, radial  SVM with c=1) , and bagging  tree (100 loops),  for 

succeeding subsets of  genes  ranked by single PAM selection. 
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Fig. 4.  Ten- fold CV classification errors with standard errors of classification methods: merged 

classifier  (HeterMerge2 based on vote on k-nearest neighbour, regularized classifier, nearest mean  

classifier, linear SVM with c=1, radial  SVM with c=1) , and bagging  tree (100 loops),  for 

succeeding subsets of  genes  ranked by combined  selection of  eight procedures  

(BetweenWithinRatio,   Gini,  PermutAdjPmaxT, PermutAdjPminP,  PermutAdjPmaxTWilcox,  

PermutAdjPminPWilcox,  HochbergLS,  and HochbergWilc).  

 
 

 

IV. DISCUSSION 

Different ensemble techniques examined for selection of variables are not essentially different 

according to evaluation by CV classification errors and also there is no important difference 

between them and SAM or PAM selection. In the set of joint selection methods, part of them 

comes from the same ideas- like permutation tests or Hochberg correction for multiplicity. 

The question arises if joining selections from wider set of diverse procedures might improve 

results for combined classifiers.  

Heterogeneous Merge classifier obtained by majority  voting on base decisions of  five 

constitutive discriminant procedures, like  k-nearest neighbour, regularized classifier, 

Euclidean classifier (nearest mean), linear SVM, radial  SVM, occurred to outperform all four 

examined combined tree methods based on resampling of data set D. The base classifiers 
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joined into Heterogeneous Merge classifier come from several different ideas from wide 

pattern recognition methodology. Ensemble might use important and concurrent benefits of 

base methods. 

Number of genes may be chosen as a trade-off between the size of genes set and the 

decrease of error.   The optimal genes subsets are indicated by Heterogeneous   classifier to be 

about 50-70  genes, where the classification error  holds the stable level. 

 

V. CONCLUSION 

According to fold cross-validation errors, for microarray data set Prostate, heterogeneous 

merge of classifiers performs significantly better than homogenous ensembles like bagging, 

LDA double bagging and SLDA double bagging. Smaller 10-fold cross-validation errors 

were achieved for heterogeneous ensemble of regularized discriminant analysis, kNN, linear 

and radial SVM and nearest mean classifiers than for homogenous ensembles, independently 

on previous variables selection method.  The difference between misclassification rates is 

significant for 50-80 genes. The advantage may come from different ideas of merged 

constituent classifiers, because all of them have different properties and benefits.  

 Hoverer, merging of ranking genes obtained from permutation procedures adjusted for 

multiplicity, Gini index, between-within groups diversity, parametric and nonparametric 

testing with Hochberg adjustment for multiplicity was not important for subsequent 

misclassification rates. 

Thus, the usefulness of combining procedures over single procedures was beneficial 

for building classifiers stage but not for dimension reduction. The preliminary step of 

combining genes ranking was not essential for the performance for both heterogeneously and 

homogenously combined classifies. 
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Abstract 

Evaluation of attitudes and individual satisfaction is one of the most important problem in real-

world investigations. In this study the Master’s partial credit model was successfully applied 

to each of four dimensions of the 4CornerSAT scale to measure career satisfaction of physicians. 

Keywords:  Rasch, partial credit model, career satisfaction 

 

I. INTRODUCTION 

 

In context of Item Response Theory (IRT) pseudo-Rash partial credit method (PCM) 

estimates a hidden linear ordering of a scale items along common axis of mean scores given 

by particular participants of a questionnaire survey to all scale items, [1].  

PCM estimates thresholds between scale items with use of each pair of adjacent levels 

on applied Likert scale. Table 1 presents PCM estimates, obtained in studies [2] and [3].  

 
Table 1: Ranks of seven chosen items of Physical Functioning scale  from SF-36 questionnaire. 

Accordingly to [3] 
 

Accordingly to [2] 

Thresh.:1/2 Thresh.:1/2&2/3 Thresh.:2/3 rank Thresh.:1/2 Thresh.:1/2&2/3 Thresh.:2/3 

 
PF09 

 
1 

 
PF09 

 

 
PF05 

 
2 

 
PF08 

 

 
PF08 

 
3 

 
PF05 

 PF02 
 

PF07 4 PF02 
 

PF07 

 
PF04 

 
5 PF07 

 
PF02 

PF07 
 

PF02 6 
 

PF04 
 

 
PF01 

 
7 

 
PF01 

 Thresh.:1/2 – threshold between score=1 and score=2; Thresh.:2/3 – threshold between score=2 and 

score=3; PF01: Vigorous activities; PF02: Moderate activities; PF04: Climbing several flights of 

stairs; PF05: Climbing one flight of stairs; PF07: Walking more than a mile; PF08: Walking several 

blocks; PF09: Walking one block. 
 

SF-36 questionnaire includes ten items of physical functioning (PF) scale, scored with Likert 

scale from 1=(strong limitation), to 3=(no limitation), to assess how health limits physical 

functioning, [3]. In study [2] only seven PF items were considering.  

It should be noted plainly that the both orderings showed at Table 1 violate the fundamental 

Rasch postulate: range(PF02)=4 was smaller than range(PF07) for participants making 

a choice between score=1 and score=2, but for participants making a choice between score=2 

and score=3, range(PF07)=4 was smaller than range(PF02).  

Despite this issue, any corrections of PF scale wasn’t proposed, because authors in the field 

[2, 3] followed a pragmatic rule: the widely acknowledged effectiveness of PF scale prevails 
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over some  little formal imperfection, However, from formal statistical perspective, in [3] 

it was proved that PF measured a unidimensional construct, and in [2] it was proved that the 

proposed orderings [2, 3], can both follow from the same hidden ordering.    

The 4CornerSAT questionnaire to evaluate career satisfaction of physicians was originally 

created in English, [4], but later this was adapted to Polish and Spanish, [5, 6].  

The 4CornerSAT had four scales, related to personal, professional, inherent and performance 

dimensions of career satisfaction. Each scale had four items, each scored on 6-point Likert 

scale: 1=very.dissatisfied; 2=satisfied; 3=somewhat.dissatisfied; 4=somewhat.satisfied; 

5=satisfied; 6=very.satisfied. 

 

 

 
Fig. 1. Comparison of English and Polish versions of 4CornerSAT questionnaire, [5]. 
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II. METHODOLOGY 

 

Data were drawn from eligible physicians working in six hospitals of Andalusia, Spain, 

between 2009 and 2010. Participants were invited by e-mail to complete on-line questionnaire 

which included 4CornerSAT scale in Spanish, [7]. In relation to the sample size, N=121, the 

Likert scores 1 to 3 were merged into a single category “score123”.  

The partial credit method was applied separately to each scale of the questionnaire. Intraclass 

Correlation and Analysis of Variance for difference among scale’s items, and for 

homogeneity of partial orderings were calculated using an on-line calculator: 

http://department.obg.cuhk.edu.hk/researchsupport/IntraClass_correlation.asp.  

 

III. RESULTS  

 

Of the N=299 eligible physicians,  N=121 completed the questionnaire (40.7% response rate).  

The reliability of the questionnaire was supported with Cronbach’s alpha, alpha>0,77 for 

separate scales, and alpha=0.92 for the all four scales considered jointly. The further 

descriptive statistics and results of validation made with classical methods one can find in [6].  

 

 
 

Fig.2. Factors associated with higher levels of satisfaction, (attained from source: [6]). 
 

http://department.obg.cuhk.edu.hk/researchsupport/IntraClass_correlation.asp
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Table 2. Presents the distribution of mean scores of the participants.  

 

Table 2: Distribution of the mean scores from all participants (N=121)  

Y/4 1-1.5 1.75 2 2.3 2.5 2.8 3 3.3 3.5 3.8 4 4.3 4.5 4.8 5 5.3 5.5 5.75 6 

N 0 2 2 0 1 1 0 3 3 7 11 11 18 30 20 6 5 1 0 
Y – sum of scores from four scales of 4CornerSAT questionnaire; Y/4 – mean score; N – number 

of participants  
 

Partial medians of mean scores were shown in Tables 3, 4, 5, and 6.  

 

Table 3: Partial medians  of the mean scores from the personal satisfaction scale.  

Item score123 score4 score5 score6 

11 2,88 4,00 4,75 5,25 

12 3,25 4,25 4,5 5,25 

16 3,25 4,5 4,75 4,75 

15 3,25 4,25 4,75 5,38 
Item – number of item in the questionnaire;  
score - level of applied Likert scale.   
 

Table 4: Partial medians of the mean scores from the professional satisfaction scale.  

Item score123 score4 score5 score6 

10 1,75 4,00 4,75 5,25 

8 3,5 3,75 4,75 5,25 

9 3,25 4,5 5 5,5 

13 3,75 4,75 5 5,75 
Item – number of item in the questionnaire;  
score - level of applied Likert scale.   
 

Table 5: Partial medians of the mean scores from the performance satisfaction scale.  

Item score123 score4 score5 score6 

4 3,25 4,25 4,75 5,00 

6 3,25 4,25 4,75 5,00 

5 3,75 4,25 4,75 5,25 

7 3,5 4,5 4,75 5,13 
Item – number of item in the questionnaire;  
score - level of applied Likert scale.   

 

 

Table 6: Partial medians of the mean scores from the inherent satisfaction scale.  

Item score123 score4 score5 score6 

1 1,88 3,75 4,50 5,00 

2 3,25 4,25 4,75 5,13 

3 3,75 4,25 4,75 4,88 

14 4,25 4,625 5 5,00 
Item – number of item in the questionnaire;  
score - level of applied Likert scale.   

 

Partial items ranks from the personal, professional, performance, and inherent satisfaction, 

were shown in Tables 7, 8, 9, and 10. 
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Table 7: Partial items ranks from items at personal satisfaction scale. 

thresholds item11 item12 item16 item15 

score123|score4 1 2 4 3 

score4|score5 1 2 3,5 3,5 

score5|score6 3 1 2 4 
score - level of applied Likert scale; Intraclass Correlation ICC=0,67: high;  
Analysis of Variance:  
homogeneity of partial orderings p(F<0,0001)<0,0001;  
difference among scale’s items p(F=5,25)=0,69. 
 

 

Table 8: Partial items ranks from items at professional satisfaction scale.  

thresholds item10 item8 item9 item13 

score123|score4 1 3 2 4 

score4|score5 2 1 3 4 

score5|score6 1,5 1,5 3,5 3,5 
score - level of applied Likert scale; Intraclass Correlation ICC=0,89: high;  
Analysis of Variance:  
homogeneity of partial orderings p(F<0,0001)<0,0001;  
difference among scale’s items p(F=19,00)=0,83. 
 

 

Table 9: Partial items ranks from items at performance satisfaction scale.  

thresholds item4 item6 item5 item7 

score123|score4 1,5 1,5 4 3 

score4|score5 2 2 2 4 

score5|score6 2,5 2,5 2,5 2,5 
score - level of applied Likert scale; Intraclass Correlation ICC=0,68: high;  
Analysis of Variance:  
homogeneity of partial orderings p(F<0,0001)<0,0001;  
difference among scale’s items p(F=5,50)=0,70. 

 

 

Table 10: Partial items ranks from items at inherent satisfaction scale.  

thresholds item1 item3 item2 item14 

score123|score4 1 3 2 4 

score4|score5 1 2,5 2,5 4 

score5|score6 1 2,5 2,5  4 
score - level of applied Likert scale;  Intraclass Correlation ICC=0,73: high;  
Analysis of Variance:  
homogeneity of partial orderings p(F<0,0001)<0,0001;  
difference among scale’s items p(F=6,70)=0,73. 
 

 

IV. DISCUSSION 

 

Homogeneity of partial orderings, shown in Tables 7, 8, 9, and 10, was supported for each 

scale separately, with high Intraclass Correlation ICC>0,67 and with Analyses of variance: 

p(F<0,0001)<0,0001. Substantial difference among scale’s items was also supported by 

Analyses of variance: p(F>5,25)>0,69. 
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V. CONCLUSION 

 

It was proved that in the context of the Item Response Theory (IRT), the Master’s partial 

credit method can support validity of 4CornerSAT questionnaire to evaluate career 

satisfaction of physicians.  
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Abstract 

The papers introduced software called VoS for validation results of image segmentation using 

reference image. This software is for objective and quantitative assessment of the performance 

of segmentation methods and their comparisons. It is general framework for reveling the 

performance of any segmentation algorithm despite the examples of its usefulness presented in 

paper concerns segmentation of images of the immunohistochemicaly stained tissue section.   

Keywords: empirical goodness measure, image processing, image segmentation, quantitative 

assessment, unsupervised evaluation, validation framework  

 

 

I. INTRODUCTION 

 

The image segmentation is an important process of image analysis with a great influence on 

the results [1]. Determined by the aim of analysis it divides image into areas that correspond 

to real-world objects of interest [2]. There are thousands of proposed image segmentation 

algorithms [3 – 5] but still there is no general performance measure of segmentation that 

would allow comparison of different methods or different parameterizations of single method. 

Generally, all proposed methods are evaluated by their authors using their own image 

database and/or using reference images prepared by specialists under authors guidelines. It is 

called supervised or relative evaluation method. There is a need of a method to compare 

methods/parameterizations in an application-independent way [6], so-called unsupervised also 

known as stand-alone or empirical goodness methods. This type of comparison quantifies how 

well it matches a broad set of characteristics or patterns prepared for testing according to the 

researchers needs. There are special databases of simple artificial or natural patterns with 

various features. Each pattern composition should be accompanied by the corresponding 

information about its location in the image. Such database is proposed by Zhang Y. J. [7] and 

by Brodatz album [8, 9].  

The proposed software called Validation of Segmentation (VoS) can be used to compare 

images after segmentation with reference image or information about patterns. The software 

automates the procedure of comparison between reference image or patterns location and 

result image, then it calculates the statistics that describe performance of segmentation and 

creates visualization of the comparison. 

 

II. METHODOLOGY 

 

For binary (black and white) images, the VoS calculates the number of pixels in four standard 

categories: true positive, true negative, false positive and false negative. The pixels of 

segmented objects that are also present in the reference image, are called true positives (TP). 

False positives (FP) are the pixels belonging to objects in the segmented image but to the 

background in the reference image. On the other hand pixels classified by segmentation as 

background that belong to objects in reference image are true negatives (TN). False negatives 
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(FN) are pixels classified as background in the segmented image and in the reference image. 

Based on the number of pixels in those four categories it is possible to calculate more 

complex evaluation. The VoS software implements the statistical measurements of 

performance such as sensitivity, specificity and accuracy as well as coefficients developed by 

Dice, Jaccard, Sokal and Sneath, and Rogers and Tanimoto. All these features are calculated 

according to definitions in [10].  

Additionally to calculating parameters, this software can produce visual comparison of the 

binary images. Objects from the result of segmentation and reference image are presented as 

object boundaries imposed in various colors on white background, as it is presented in fig. 2 

in [11]. 

Moreover, the VoS software calculates the measurements of image similarity and quality such 

as: mean square error (MSE), root mean square error (RMSE), normalized root mean square 

error (RMSEnorm), peak signal-to-noise ratio (PSNR) and normalized peak signal-to-noise 

ratio (PSNRnorm). Additionally, measurement matched to perceived visual quality is 

calculated. It is a perception-based model of structural similarity index (SSIM ) defined by 

Wang and coworkers [12] that compares separately three components: luminance, contrast 

and structure. These parameters can be calculated for binary as well as full color (RGB) 

images. 

 

III. RESULTS 

 

The software is developed in MATLAB R2015b, implemented on Intel(R) Core(TM) i7-

4710MQ@2.50GHz CPU, 16.0GB RAM. 

The VoS software has been used by authors on many occasions with great results. It produces 

reliable results of comparison and accumulates different features into one dataset. For 

example, all the coefficients are presented in tables for each singe image in test database as it 

is presented in tables 4-6 in [10] or averaged version for all compared methods as it is 

presented in tables II and III in [11]. 

 

IV. DISCUSSION AND CONCLUSION 

 

The proposed framework for validation of image segmentation results is efficient and can be 

used to compare methods/parameterizations in both application dependent and independent 

ways. It is a general framework for evaluation of the performance of any segmentation 

algorithm despite the examples of its usefulness presented in this paper concerning images of 

immunohistochemically stained tissue sections. It creates an alternative to use of general 

image manipulation software, for example Photoshop or ImagePro Premier supported by 

Excel, where this type of operations are possible but requires plenty of human direct data 

manipulation. 
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Abstract 

Tree-based predictors are recently quite common approaches to analysis of survival data. In the 

paper an oblique survival tree is proposed for prediction of CIF function for an event of interest 

in the presence of competing risks. Induction of the tree is based on minimization of dipolar 

criterion function; pruning phase is conducted according to split-complexity method proposed 

by LeBlanc and Crowley. The predictive ability of the received tool is measured by c-index with 

its extension for competing risks. 

Keywords:  competing risks, dipolar criterion, survival tree 

 

 

I. INTRODUCTION 

Tree-based predictors are recently quite common approaches to analysis of survival data. 

They may be considered as alternative tools to statistical methods, that usually require many 

assumptions to meet. Survival trees dedicated to competing risks are narrowed to models with 

single variable tested in each internal node. The test usually takes a form of simple inequality: 

v<a and v≥a, where v is a variable and a is an real value. In case of oblique trees each internal 

node has a form of a hyperplane H(w, θ): {v: w1v1+w2v2+…+wNvN-θ=0}, where v1, v2,.., vN are 

variables and w1, w2, …, wN, θ are coefficients. The test divides the data into two subsets: the 

feature vectors which are placed on positive (w1v1+w2v2+…+wNvN-θ≥0) or on negative 

(w1v1+w2v2+…+wNvN-θ<0) side of the hyperplane. 

In the paper the algorithm of induction of survival trees dedicated to competing risks is 

presented.  

 

III. METHODOLOGY 

Let us assume, that we have a learning sample L with M observations described by (xi, δi, ti), 

where xi is a vector of N variables xi1, xi2, …,xiN describing ith subject, δi ϵ {0,1,.., K} is a 

failure indicator representing the type of event occurred, ti is a survival time. For censored 

subjects the failure indicator is equal to 0. 

 

A cumulative incidence function (CIF) is used to describe the failure time distribution in case 

of competing risks. The CIF for the ith type of event is defined as: 

 
 

and may be interpreted as the probability that an event of type i occurs before or at time t. The 

estimate of CIF is given as: 

 
Our purpose is to build a binary, oblique survival tree which would be able to predict CIF for 

event of interest for a new subject.  
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We build a tree starting from the root node. On the base on the learning data, the optimization 

algorithm searches for a test which divides the feature vectors into two subsets. In case of 

oblique trees, a test has a form of a hyperplane. For each subset a new tree node is generated 

and the procedure is repeated. If certain conditions are fulfilled, the node becomes a terminal 

one. Terminal nodes are final nodes and do not contain any tests, they comprise only sets of 

subjects, that have reached the node. The subjects belonging to a terminal node constitute the 

output of the tree; in our approach the output is defined as a CIF function. 

 

The optimization procedure which searches for a best test in each internal nodes is focused on 

dividing the feature space into areas, which would include the patients with similar survival 

times. The test hyperplane in a given internal node is obtained by minimizing a dipolar 

criterion function being a sum over some specified criterion functions connected with dipoles 

- pairs of different feature vectors (xi, xj) from the learning set [1]. Mixed dipoles are created 

between two subjects, that should be divided, while pure ones – between two subjects that 

should remain undivided. Taking into account censored cases and assumptions made by Fine 

and Gray [2], who treated the subjects failed for other causes as at risk at any time, I propose 

the fallowing rules of dipole construction: 

 a pair of feature vectors {xi, xj} forms the pure dipole, if 

 i = j = 1  | ti – tj | < , z=1,2,…, p 

 a pair of feature vectors {xi, xj} forms the mixed dipole, if  

 i = j = 1  | ti – tj | > , z=1,2,…,p 

 (i = 0, j = 1   ti – tj  > )  or  (i = 1, j = 0  tj – ti > ) 

 (i = z, j = 1)  or  (i = 1, j = z), z=2,…, K 

Parameters  and  are equal to quartiles of absolute values of differences between survival 

times for all evaluable pairs of subjects. Based on earlier experiments, the parameter  is 

fixed as 0.3 quantile and  - 0.6.  

The final tree is received by application of pruning algorithm, which reduces a part of tree 

branches and causes better prognostic ability. I use the split-complexity pruning [3], with 

Grey’s splitting statistics and 10-fold cross-validation procedure. 

The predictive ability of the received tool is measured by the c-Index with its extension for 

competing risks proposed by Wolbers at al. [4]. 
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Abstract 

Feature selection techniques are used for reduction as many as possible number of irrelevant 

or redundant features in a given classification or regression problem.  Feature selection problem 

is particularly important and challenging in the case when the number of patients is low in 

comparison to the number of features used to characterise these patients. Such situation appears 

typically in exploration of genomic data sets. The Relaxed Linear Separability (RLS) is the 

method of feature subset selection developed by us currently. New results of an application 

of the RLS method to important genomic data set is described in the paper. 

 

 

I. INTRODUCTION 

 

Data mining tools are aimed at extraction of useful patterns in learning data sets [7,9]. 

Particular data mining tools which are based on minimization of the convex and piecewise 

linear (CPL) criterion functions are developed and applied by us for the solution of various 

pattern recognition problems [5,6]. The perceptron criterion function belongs to the 

considered family of the CPL functions. This criterion function originated from the concept of 

linear separability of multivariate data sets. 

 Feature selection techniques are expected to allow finding such feature subsets, which 

are beneficial for the solution of practically important problems of classification or prognosis. 

The Relaxed Linear Separability (RLS) method of feature subset selection is based on the 

minimization of the perceptron criterion function and used for evaluating the degree of linear 

separability of learning data sets in various feature subspace [3,4]. Using the RLS for feature 

selection from large, multidimensional data sets can be based on computational techniques, 

which are called the basis exchange algorithms [1]. Basis exchange algorithms are similar to 

the Simplex algorithm from linear programming. They are applied by us in efficient 

minimization of the CPL criterion functions. 

 The feature selection problem is particularly important and challenging in the cases of 

genomic data sets, when the number of cases is low in comparison to the number of features 

(genes) used to characterise these patients. The presented paper contains new results of 

application of the RLS method to selection of important feature from genomic Type 1 

Diabetes data set (T1D) obtained from a genetic screening study for T1D susceptibility. 

 

II. THE RELAXED LINEAR SEPARABILITY (RLS) FEATURE SELECTION METHOD 

 

The Relaxed Linear Separability (RLS) is the method of feature selection. This approach to 

the feature selection problem refers to the concept of the linear separability of the learning 

sets C
+
 and C

−
, containing m (m = m

+ 
+ m

−
) feature vectors xj [2]. 
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 xj = [xj1, . . .,xjn]
T
 (j = 1, . . ., , m) 

 

The sets C
+
 and C

−
 are linearly separable if and only if they can be fully separated by some 

hyperplane H(w,θ): 

 

 (∃w,θ)  (∀xj ϵ C
+
) w

T
xj > θ and (∀xj ϵ C

−
) w

T
xj < θ 

 

The term “relaxation” means the deterioration of the linear separability due to the gradual 

neglecting of selected features. The considered approach to feature selection is based on 

repetitive minimization of the CPL criterion functions λ(w,θ). 

 

 λ(w,θ) = Σ φj
+
(w,θ) +  Σ φj

−
 (w,θ) + λΣ |wi| 

          xj ϵ C+      xj ϵ C−      i=1,...,n 

 

                    1+ θ - w
T
xj if    w

T
xj < 1+ θ 

 φj
+
(w,θ) = 

                    0                   if    w
T
xj ≥ 1+ θ 

 

                    1- θ + w
T
xj if    w

T
xj > -1+ θ 

 φj
−
 (w,θ) = 

                    0                   if    w
T
xj ≤ -1+ θ 

 

 The RLS feature selection method consists of three stages [3,4]. The first stage is to 

determine an optimal hyperplane H(w*,θ*) separating objects xj from the learning sets C
+
 and 

C
−
. This stage results in the optimal hyperplane H(w*,θ*) and an initial feature set Fk 

composed of k features. 

 In the second stage, the value of the cost level λ in the criterion function λ(w,θ) is 

successively increased. This causes the reduction of some features xi as a result of the zeroing 

of corresponding weights wi. As a result of the second stage, we obtain the descended 

sequence of feature subsets Fk with decreased dimensionality. 

 The last step is the calculation of the classifier accuracy in each reduced dataset 

corresponding to the subsets of features in sequence Fk, Fk-1, ..., F1. As a result of the third 

stage and the whole RLS method, we obtain the feature set F*. This is the feature set 

characterized by the greatest accuracy of classifier. 

 

III. COMPUTATIONAL EXPERIMENT 

 

1. Data set 

 

The T1D data set contains information about 3463 patients diagnosed with type 1 diabetes. 

The data are well balanced, because 1705 (49.23%) objects concern disease person and 1758 

(50.77%) objects representing healthy persons. Each object is described by 154 features, 

among which we can distinguish Gender, Age at Diagnosis, HLA genotype, HLA subgroup, 

HLA riskgroups and 128 single nucleotide polymorphisms (SNPs, genetic information). 

 

2. The course of the experiment 

 

To be able to use the RLS method for data set, a data set should be represented in the form of 

a matrix of numerical values. The matrix should not contain missing values. Since the T1D 
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data set did not meet the above conditions, it had to be subjected to a preliminary preparation. 

Preprocessing included missing data imputation and coding SNP features. 

 The raw T1D data set was missing a total of about 25% values (see Figure 1). To 

obtain the data set without missing values, we performed two preprocessing steps. At the 

beginning we removed the 1637 objects that have more than 35% of missing values and 4 

features that have more than 35% of missing values. The remaining about 4% missing values 

we filled out using 1NN imputation [8]. 

 

 

 
Fig. 1. Fractions of objects containing missing values, e.g. value ~52% for maximum percent of missing values equals 35% 

means that there are 52% objects containing at most 35% missing values each.  

 Features representing SNPs are single-nucleotid poliformisms; variation in a single 

nucleotide that occurs at a specific position in the genome. Since the RLS method requires 

that the features have only numeric values, the features representing  SNPs have to be 

converted into numerical values. In order not to favor any of the original feature value 

representing the SNP, we have replaced each of these features by a few new binary features. 

One primary feature was replaced by n new features, where n equals the number of different 

values which the primary feature adopts. The values of the new features are 1 or 0: 1 where 

the value of the original feature was equal to the value represented by the new feature, and 0 

otherwise. The example of described transformation is shown in Figure 2. 

 

 
Fig. 2. The example of coding genetic feature. rs479955_chr10_NA is an original feature, the rs479955_chr10_NA (CT), 

rs479955_chr10_NA (CC) and rs479955_chr10_NA (TT) are new coded features. 

 After the preprocessing procedures, we received data set contains 1826 objects, each 

object described by 396 features. On the prepared data set we used the RLS method of 

features selection. 
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3. Results 

 

Figure 3 illustrates both the apparent error (AE) and the cross validation error (CVE) values in 

feature subspaces tested by the RLS procedure. A significant change in the trend of errors is 

visible in the feature subspace of size 6. In connection with this, the feature subspace of size 6 

has been selected as the result of our feature selection procedure. 

6 selected features: 

 HLA riskgroup 
 rs689 chr11 INS (AA) 
 rs2476601 chr1 PTPN22 (GG) 
 rs1409338 chr10 PLXDC2 (GG) 
 rs3087243 chr2 CTLA4 (GG) 
 rs1701704 chr12 NA (AA) 

 

 

 
Fig. 3. The apparent error rate (AE) and the cross-validation error (CVE) in different feature subspaces Fk. 

 

IV. CONCLUDING REMARKS 

 

The above-described research is a preliminary attempt to analyze the T1D data set. The results 

must be thoroughly evaluated by experts in the field of medicine and genetics to found 

practical application in the future. Currently, a cursory evaluation of the set of selected 

features indicates that these are the features (genes) which have a significant association with 

diabetes. This relationship was also confirmed in other independent studies. 
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Abstract 

Due to inherent complex structure of underlying process, is may be difficult to build a successful 

model of process, using traditional statistical inference. Search through non-linear combination 

of variables usually suffers from course of dimensionality, and require great experience and data 

insight. On the other hand, data mining methods, like SVM may offer  increased performance 

and flexibility. This work present a comparison of classical linear regression, and SVR in study 

of organic nitrogen removal from waste water. 

Keywords: data mining, regression, SVM  

 

I. INTRODUCTION 

 

Even when feature number in dataset is small with compare to observations, simple 

reasoning using traditional statistical methods may be difficult. For regression methods, a 

number of assumptions must be met to make a valid inference from obtained model. Those 

assumptions are checked after the model is created. Standard linear regression model is not 

sufficient to many kind of data, therefore multiple extensions were added to it. Data may be 

transformed according to a link function, or extended to fractional power, variance structure 

may be extended, and so on. When appropriate regression model is found, however, it usually 

tells something about the nature of the studied process. Some processes are inherently 

complicated, therefore searching for good model take some time. Data mining regression 

models, like support vector regression, or deep networks usually have less specific 

assumptions, and can be way more flexible. This flexibility often comes with a price of 

excessive tuning to observed data, reducing generality of obtained solution. Overfitting can be 

controlled, but this requires additional computing power. If depth of learning process is 

sufficient, it may be impossible to infer relations between original variables and the result. 

Such trained deep algorithm has semantics similar to a black box. In some cases one can, 

however, reconstruct some meta-features and their relation to a solution. When price of 

flexibility is less significant, than potential gains, choice of data mining regression may be 

preferred. 

 

II.  THE DATASET 

 

Reject water is typical byproduct in every biological waste water treatment plants 

(WWTP). It is usually returned to the main sewage line causing problems with stable and 

effective work of treatment plants. Constructed wetland method is well known for treatment 

of different kind of sewage. The biggest advantage of this method is simplicity, low operating 

and constructing costs and high efficiency, especially in nitrogen removal. Full scale 

application of constructed wetland system would result in a significant decrease of pollutants 

load in rejected water.  
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The dataset was collected in research installation located in dairy WWTP. Three kinds 

of vertical flow constructed wetlands (VFCW) were checked to prove their efficiency for 

treatment of sewage (reject water) with high ammonia concentration [2]. Hydraulic load was 

the same for each VFCW kind (0.1 m
3
 per 1 m

2
 of bed surface per day). VFCW were filled 

with gravel and sand and planted with reeds (Phragmites australis). Fig. 1 presents 

installation and cross section of VFCW. Tab. 1 presents also thickness of the VFCW layers. 

 

 

Fig. 1. Installation 3 and VFCW cross section scheme [2] 

 
Tab. 1. Details of VFCW vertical cross section [2] 

Layer Material 
Thickness in VFCW 

1 

Thickness in VFCW 

2 

Thickness in VFCW 

3 

A sand (0-2 mm) 0.15 m 0.30 m 0.15 m 

B gravel (2-8 mm) 0.15 m 0.25 m 0.35 m 

C 
gravel (8-20 

mm) 
0.20 m 0.30 m 0.15 m 

D 
gravel (20-80 

mm) 
0.15 m 0.15 m D layer not present 

 

During the study course (years 2009 and 2010) such parameters as: BOD5; COD; 

nitrogen, including organic and inorganic; phosphorus and suspended solids were measured. 

Obtained data was used to calculate pollutants loads and efficiency of their removal, including 

organic nitrogen. Additional environmental parameters as temperature of air and reject water 

were measured on daily basis, to evaluate their influence on the process.  

Analyzed dataset consists of 224 observations, each described by 7 features: 

 growing season ("1" for april - october period, "0" otherwise) 

 temperature of air and reject water 

 organic nitrogen intake load 

 indicators of beds A and B ("1" for data obtained from given bed) 

 organic nitrogen removal efficiency (dependent variable), defined as in [3] 

Increase in prediction power is especially desired for selected dependent variable 

because of low predictive power of original regression model          [3], partially due to 

lack of dependency on intake load, and complex nature of nitrogen removal process. 

 

III. METHODOLOGY 

Organic nitrogen removal efficiency was estimated using the ν support vector regression 

algorithm (ν -SVR). ν-SVR [4] belongs to a family of linear classifiers and regression 

algorithms [1]. In case of regression, the algorithm tries to build a hyperplane as close to the 

observed data, as possible. This results in convex optimization problem, with can be 

effectively solved. Obviously, non linear patterns cannot be represented by a linear-one. ν-

SVR operates on transformed feature space by utilizing kernel trick, where such nonlinear 
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pattern may become linear. Dimensionality of this transformed space can vastly outnumber 

original one. In this work, a Gaussian kernel is used, due to its key properties in original 

feature space [5]. Three free parameters were tuned:  

 a control parameter   

 a cost parameter   

 a kernel flatness parameter   

To address issue of overfitting, cross validation procedure was performed on top of ν-

SVR. Additionally, 30% of the data, selected at random, was retained to from training part of 

cross validation loop to form validation set. Best model was obtained by minimizing mean 

squared error (MSE) between observed and estimated value of dependent feature.  

 

IV. RESULTS 

 

Efficiency of organic nitrogen removal was modeled using ν-SVR, with 10-fold cross 

validation. R language implementation of ν-SVR in package e1071 [6] was used. Following 

parameters range was checked: 

 
Tab. 2. Tuned parameters range 

Parameter Range 

  0.30-0.95 by 0.05, linear scale 

           , base 2 logarithmic scale, multiplied 

by 4   

 

Fig. 2 presents result of training for optimal value of      , along with optimal values 

of other parameters and mean squared error (MSE). Due to large variation in MSE, value of 

this parameter is presented here in the logarithmic scale (natural based).  

 
Fig. 2. Logarithm of MSE for the optimal ν value 
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Tab. 3 presents comparison of MSE obtained from linear model with transformation [3] 

and that obtained from validation part of data on trained ν-SVR. 

 
Tab. 3. Results comparison 

 Linear model with transformation ν-SVR 

MSE 0.0062 0.0051 

 

V. DISCUSSION 

MSE obtained from validation part of dataset was almost the same as reported by 

training procedure. To fully compare results of ν-SVR and original model one must take into 

consideration, that latter was trained without cross-validation. While it is good for statistical 

inference, model overfitting was not determined. Even with such advantage ν-SVR model has 

better accuracy by about 10% (on scale of dependent variable). Selected model has rather low 

bias and sharp details, due to combination of high cost, and low gamma parameters value.   is 

the lower bound for proportion of support vectors w.r.t. full dataset. It also controls the upper 

bound on observations count with non-acceptable deviance from calculated pattern. Small 

value of   is result of good accordance of data to the selected model.    

 

VI. CONCLUSION 

This work presents application of ν-SVR algorithm to analysis of organic nitrogen 

removal in VFCW, and compares it with earlier results. Together with additional information 

in for of original pollutant load, trained algorithm outperformed linear transformed model, 

increasing accuracy of prediction by 10% (on scale of dependent variable). Further research 

are needed to obtain even better results. Better conformance can lead to better predictability 

of work of treatment plant, connected to VFCW, even further decreasing its operating costs. 
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Abstract 

The aim of the study is assessment of accuracy of new mobile system to estimate core body 

temperature in comparison with the reference thermometer. Concordance correlation 

coefficient (CCC) and limits of agreement analyses were applied to verify the agreement of those 

two measurement methods. CCC was estimated based on the variance components of a linear 

mixed model, the variance components and fixed effects were estimated using restricted 

maximum likelihood (REML). Furthermore, the linear regression was performed to describe the 

reference method given the various temperatures measured by the new one and to calculate 95% 

prediction intervals. The latter analysis was applied because the assumptions of the limits of 

agreement analysis were not valid. The results showed that the new system performed well in 

vitro, provided a good correlation and a clinically acceptable agreement, in comparison with the 

reference thermometer. 

Keywords:  agreement assessment, concordance correlation coefficient, limits of agreement, 

linear regression  

 

 

I. INTRODUCTION 

The accidental hypothermia is a life-threatening situation and patient’s core body temperature 

is crucial information. Esophageal temperature provides key data for deciding whether or not 

to continue or to withhold resuscitative efforts in asystolic patients. The aim of the study is 

assessment of accuracy of new mobile system to core body temperature monitoring in 

comparison with the reference thermometer.  

Assessing the agreement between two measurement methods is a common statistical goal. 

Among the methods to verify agreement when data is continuous, the concordance correlation 

coefficient (CCC), introduced by Lin [1], has risen as one of the most used approaches. It 

measures the variation of their linear relationship from the 45° line through the origin 

(concordance line, perfect agreement) and has components of precision (how far each 

observation deviates from the line fit to the data) and accuracy (how far this line deviates 

from the 45° line though the origin) [2]. Pearson correlation coefficient can be very 

misleading in such situations. Any departures from the concordance line would produce CCC 

below 1 even if Pearson correlation coefficient is equal to 1. This is because the latter 
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coefficient measures a linear relationship between two continuous data but fails to detect any 

departures from the equality line [1]. Lin expressed CCC as a function of the means, variances 

and covariances of the bivariate distribution of two methods [1]. Carrasco and Jover [3] 

showed that it may be expressed in terms of the variance components of a linear mixed model, 

the variance components and fixed effects are estimated using restricted maximum likelihood 

(REML). One important feature of the REML is that it gives unbiased and asymptotically 

normally distrusted estimates of the variance components [3, 4]. This approach allows the 

CCC to be defined for more than two methods, for repeated measures and can be adjusted by 

adding the covariates to the model [4].  

Furthermore, the analysis of limit of agreement was applied as a graphical technics to analyse 

the assessment of repeatability of two methods, proposed by Bland and Altman [5, 6]. The 

idea of this analysis is to plot the individual difference between measurements taken from two 

different methods against their individual mean. It allows to investigate the size of 

discrepancies between two measurements and to judge whether they are clinically acceptable 

or not. Clinically acceptable limits of agreement should be defined a priori. It is assumed that 

there is no relation between the individual differences and the means and that the differences 

are normally distributed [6]. In case of lack independence between differences and means a 

logarithmic transformation to the raw data was proposed to reduce the significant relationship 

[5, 6]. If it fails the alternative analysis is proposed by Bland and Altman [5, 7], i.e. least 

squares regression to predict the measurement obtained by the old methods from the 

measurement obtained by the new one, and calculate 95% prediction interval for the old 

methods depending on the various temperatures measured by the new one. This approach 

gives something similar to the limits of agreement [7]. This is a calibration approach and does 

not directly answer the question of comparability.  

 

 

II. METHODOLOGY 

The new system allowing to measure the core body temperature were tested with a reference 

thermometer. The thermometers were tested simultaneously in a the same water bath at 

different temperatures between 10°C and 42°C. The temperature increments were .5°C for 

each measurement point (N=65).  

Agreement between two continuous data measured from two different measurement methods 

was evaluated by means of Concordance Correlation Coefficient (CCC) [1]. It was estimated 

by variance components to reduced bias of the moment-methods estimator proposed by Lin 

[4]. Furthermore, the analysis of limit of agreement was applied [5-7]. Clinically acceptable 

limits of agreement were a priori defined to be ±1°C. The assessment of relationship between 

the individual differences and means was based on Spearman rank correlation coefficient 

because both features were not normally distributed. The Shapiro-Wilk test was applied to 

check normality. In case of lack independence between differences and means a logarithmic 

transformation was applied to the raw data to reduce this significant relationship [5-7]. 

Unfortunately, this approach failed and the alternative analysis proposed by Bland and 

Altman, i.e. least squares regression was applied. The measurements obtained by the 

reference thermometers were predicted on the measurement obtained by the new system, then 

95% prediction interval for the reference methods were calculated depending on the various 

temperatures measured by the new one system [7]. Bonferroni correction was applied to 

calculate prediction limits for a few new observations.  

The statistical analysis were performed by means of R software (packages: cccrm, 

BlandAltmanLeh and lmtest). 

 

 



112 

 

III. RESULTS 

Firstly, agreement between the new system and the reference thermometer was evaluated. 

Measurements of the first one are plotted against the measurements of second one in Fig. 4 

(the left panel). It can be seen, within a tolerable error, that the measurements fall on the 45° 

line through the origin. This indicate that the reference thermometer is highly reproducible by 

the new system. The concordance coefficient with 95% confidence interval is equal to .9999 

(.9998, .9999). The source of slight disagreement is the random error (variance estimate of 

.0082) rather than the systematic differences between thermometers (variance estimate of 

.005).  

The left panel of Fig. 4 presents comparison of measurements by means of the limits of 

agreement plot. The mean difference is .102 (95%CI: .069, .133), hence, the new system 

overestimate the measurement of temperature, by between .069 and .133. The new system 

gave higher results in 38 measurement points (58.46%), exactly the same in 25 cases 

(38.46%) and lower results in 2 cases (3.08%) than the reference one. The limits of agreement 

lie in the range of -.149 (95%CI: -.204, -.095) and .353 (95%CI: .298, .408). It should be 

noticed that the assumptions of this analysis are not met. The differences are not normally 

distributed (p<.001) and the differences are not independent on the mean, i.e. the individual 

differences decrease as the averages of measurements increase (R=-.64, p<.001). The 

logarithmic transformation was applied to the data, but unfortunately it did not improve the 

results.  

 

 
Fig. 4. New system measurements versus spacelab measurements in przełyk (left panel). Dashed lines 

represent the 45° line through the origin. Bland-Altman plot for przełyk (right panel). 

 

The regression analysis was applied to describe the negative trend and to calculate 95% 

prediction intervals for the reference method given the various temperatures measured by the 

new methods. It was found that the measurement of the reference thermometer lie between 

9.50°C and 10.04°C with probability of .95 when the new method reading is equal to 10°C, 

between 19.58°C and 20.12°C when the new method measurement is equal to 20°C, between 

29.66°C and 30.20°C when the new method reading is equal to 30°C and between 39.74°C 

and 40.28°C when the new method reading is equal to 40°C. Thus, the presented prediction 

intervals for the old method were within the limit of ±.54°C.  

 
 

IV. DISCUSSION & CONCLUSION 

The early hypothermia recognition allows to perform suitable management and to reduce 

mortality among trauma patients. The treatment of a patient in accidental hypothermia should 
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be modified, depending on patient`s core body temperature. The study showed that the new 

system proposed by the authors to estimate core body temperatures performed well in vitro, 

provided a good correlation and a clinically acceptable agreement, in comparison with the 

reference thermometer. The main limitation of this study is that the new system was evaluated 

with only one reference thermometer.  
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Evaluation of attitudes and individual satisfaction is one of the most important problem 

in real-world investigations. In this study the comparison of English and Polish versions 

of 4CornerSAT questionnaire to measure career satisfaction of physicians is presented. The 

4CornerSAT questionnaire originally was created in English, but later this was adapted 

to Polish and Spanish. The 4CornerSAT had four scales, related to personal, professional, 

inherent and performance dimensions of career satisfaction. Each scale had four items, each 

scored on 6-point Likert scale: 1=very.dissatisfied; 2=satisfied; 3=somewhat.dissatisfied; 

4=somewhat.satisfied; 5=satisfied; 6=very.satisfied. The practical usefulness and validity 

of 4CornerSAT questionnaire were supported in several studies in the matter.  
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Meta-analysis is a statistical technique for combining the findings from independent studies. 

Outcomes from a meta-analysis may include a more precise estimate of the effect of treatment 

or risk factor for disease, than any individual study contributing to the pooled analysis. As 

with any statistical procedure, meta-analysis has its strengths and limitations, but is now one 

of the standard tools for providing transparent, objective, and replicable summaries of 

research findings in the social sciences, medicine and other fields. The objectives of the 

presentation are to provide an introduction to meta-analysis and to discuss the rationale for 

this type of research and other general considerations using a medical data. We will then 

delve into fixed-, and random/mixed-effects models for combining the observed outcomes 

and for examining whether the outcomes depend on one or more moderator variables.  
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Abstract 

The data in medical research should be carefully selected. Properly prepared study requires 

representative sample, what should be taken into account on the stage of planning the study. 

There are many aspects that should be considered before beginning of the data collection 

process. Insufficient attention at an early stage can lead to very serious consequences. In an 

extreme case database may become useless in the study. However, sometimes research must be 

carried out despite the fact that sample is unrepresentative. In such a situation, conclusions have 

to be fairly drawn and carefully formulated. It should also be noted that each research requires 

an individual approach. Copying scheme of procedures from other studies may lead to draw 

wrong conclusions. 

 

I. INTRODUCTION 

 

The term “representative sample” is far from clear. In medicine it depends on the type of the 

research. For example, representative sample in cohort study means something else than in 

clinical trial. The definition of this term depends on the context in which it is used. In 1979 

Altman and Mosteller carried out an analysis of ways of defining “representative sampling” 

[1], [2], [3]. They studied the use of this term in scientific and non-scientific literature. 

Despite the passage of years meaning of “representative sampling” does not change. 

There may be enumerated following meanings of the term “representative sample”: 

- Sample selected at random; 

- Absence of confounding factors; 

- Miniature of the population; 

- Coverage of the population; 

- Allows for good estimation of population parameters; 

- Good enough for particular purpose. 

However, regardless of what the definition researcher accepts, checking if sample meets this 

definition would be very difficult. 

 

II. STAGES OF SAMPLING AND ITS REPRESENTATIVENESS 

 

A lot of factors affect on the representativeness of the sample. Mistakes made at each stage of 

sampling may cause that the proposed analysis will be impossible to carry out. Hypotheses 

that have been formulated can remain unresolved. Population should be defined in a precise, 

accurate and clear way. It is important to prepare current and complete sampling frame. The 

next step is to choose the sample selection process. In the case of random sampling method 

(such as simple random sampling, systematic sampling, stratified random sampling, and 

cluster random sampling) each unit has the same chance to be chosen to the sample. Samples 

selected in this manner are more representative and less biased compared to a non-random 

samples. It is also important that the sample should have adequate number of elements. The 



119 

 

minimum sample size should be determined based on the fixed level of significance and 

power of the test. It is well known that the higher the number of units the better the quality of 

the study. Note, however, that “Samples which are too small can prove nothing; samples 

which are too large can prove anything” [4]. 

 

III. SELECTION BIAS 

 

The sample which is not representative can be called biased sample. There are a number of 

factors that may cause the sample biased [4]. Several examples of biased samples are 

presented below. Furthermore it is shown as the bias may affect that the results become 

misinterpreted. 

In medicine there are often compared two or more interventions. Patients should be assigned 

to groups at random. Unfortunately, sometimes this decision depends on investigator, what 

may lead to occurrence of the selection error. 

An example of such situation would be a Simpson paradox [5]. The authors compared the 

efficacy of different treatments of renal calculi. Table 1 shows the number of successes 

obtained during the open surgery and percutaneous nephrolithotomy. Success was defined as 

no stones at three months or stone reduced to particles lower than 2 mm in size. 

 

Table 1. A comparison of the number of successes between open surgery and percutaneous 

nephrolithotomy. 

 Open surgery Percutaneous nephrolithotomy 

n % n % 

Success 273 78% 289 83% 

Failure 77 22% 61 17% 

Total 350 100% 350 100% 

 

It can be concluded that percutaneous nephrolithotomy has greater efficacy (83%) compared 

to open surgery (78%). In the analyzed example confounding variable is the size of the stones. 

It turns out that taking into account this variable, the conclusion is opposite. Open surgery was 

characterized by greater efficiency in the case of small (93% vs. 87%) and large (73% vs. 

69%) stones (Table 2 and 3). 

 

Table 2. A comparison of the percentage of successes between open surgery and percutaneous 

nephrolithotomy for stones of a mean diameter of less than 2 cm. 

 Open surgery Percutaneous nephrolithotomy 

n % n % 

Success 81 93% 234 87% 

Failure 6 7% 36 13% 

Total 87 100% 270 100% 
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Table 3. A comparison of the percentage of successes between open surgery and percutaneous 

nephrolithotomy for stones of a mean diameter of 2 cm or more or with multiple stones. 

 

 Open surgery Percutaneous nephrolithotomy 

n % n % 

Success 192 73% 55 69% 

Failure 71 27% 25 31% 

Total 263 100% 80 100% 

 

Patients were not assigned for treatment at random. The method of treatment was dependent 

on the medical condition of patients. In the cases of poorer health more frequently surgical 

procedures were performed. Patient who were treated with percutaneous nephrolithotomy 

were characterized by better general health and smaller stones. Comparing these two methods 

of treatment without taking into account the size of the stone is a serious mistake. 

Another example of a non-random assignment of patients to the groups is described below. 

The study concerns two methods of dental treatment. Assume that the researchers want to 

compare two methods of dental filling: A and B. Then they have decided to use a material A 

always on the right side of the mouth, while the material B always on the left side. One year 

after intervention it turns out that material B is stronger. One would conclude that the material 

A is poorer quality. However, it should be taken into account that majority of the respondents 

are right-handed. It can be find that not the difference between the materials would affect the 

results. The difference might have been caused by the fact that right-handed people better care 

of hygiene on the left side of the mouth. 

Medical data are often collected in a particular health center. In this case the results should be 

generalized very carefully. For example, hospital patients are not representative for the whole 

population from which they come. They were not randomly selected to the sample. Joseph 

Berkson in 1946 wrote about the limitations that occur analyzing hospital data [6]. The 

following example illustrates the mechanism of Berkson paradox.  It can be considered the 

population of 2500 people and two diseases: A and B. Assume that during the relevant period 

250 of them went to the hospital. Tables 4 and 5 present the incidence of these diseases in the 

sample and in the population, respectively. 

 

Table 4. Incidence of diseases A and B among hospital patients. 

  Disease A 

YES 

Disease A 

NO 

Total % people with 

disease A 

Disease B YES 10 20 30 10/30=33% 

Disease B NO 30 190 210 30/210=14% 

Total 40 220 250 40/250=16% 

 

Table 5. Incidence of diseases A and B among whole population. 

  Disease A 

YES 

Disease A 

NO 

Total % people with 

disease A 

Disease B YES 30 200 230 30/230=13% 

Disease B NO 250 2020 2270 250/2270=11% 

Total 280 2220 2500 280/2500=11% 
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Analysis of data collected in a hospital suggests the existence of a statistically significant 

association between the occurrence of disease A and B (
2
=7.62, p=0.0058). However, it 

turns out that in a population this relationship is not found (
2
=0.87, p=0.3522). This 

discrepancy comes from the fact that patients with more diseases more often go to the hospital 

(Table 6). 

Table 6. The percentage of people admitted to the hospital with regard to the occurrence of 

diseases A and B. 

  Disease A 

YES 

Disease A 

NO 

Disease B YES 10/30=33% 20/200=10% 

Disease B NO 30/250=12% 190/2020=9% 

 

Researchers who analyze hospital data should be aware that this kind of material may not be 

representative for the whole population. Unfortunately, without examine the different sample 

(randomly selected from the population) it is not possible to assess whether the conclusions 

observed in the hospital are true for the population. 

 

IV. CONCLUSIONS 

 

Selecting a representative sample from the study population remains a main challenge in 

medical research. Essentially, sampling has to be  juxtaposed with a study context. The 

samples do not need to be representative in all the aspects. They need to match key 

characteristics important for an investigated problem. Some of research studies rely on 

unrepresentative sampling which cannot be indicative and require a special attention when 

interpreting results. 
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Multivariable analysis is used frequently in studies of clinical outcomes. The most important 

methods include linear regression for continuous outcomes, logistic regression for binary 

outcomes, Cox regression for time-to-event data, and Poisson regression for frequencies and 

rates. These statistical models can admit a mixture of categorical and continuous variables 

that are collected to determine factors affecting an outcome of interest or to investigate 

relationships among variables. 

Variable selection and model performance assessment are the crucial steps in the process of 

model building. Unfortunately, nowadays a user-friendly statistical software doesn’t require 

mathematical background to perform analysis; therefore, careless application of modelling 

procedures may result in models that poorly fit within the data or inaccurately predict studied 

outcome.  

The aim of this presentation is to provide practical advice on how to set up and interpret 

multivariable models. We will discuss step by step the process of performing multivariable 

analysis: 1/ choosing the correct model, 2/ selecting set of independent variables, 3/ setting up 

the model (interaction, missing data, convergence), 4/ interpreting model’s parameters, 

5/ checking underlying assumptions, and 6/ validating the model.  

 

 

STATISTICAL INFERENCE IN MULTIVARIATE ANALYSIS OF 

MEDICAL DATA 
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In the lecture we will return to the diagram of a typical statistical inference for multivariate 

data analysis in medical research. We will discuss the subsequent stages of statistical 

inference - starting from the determination of the aims of the research, description of initial 

data for analysis, through the formalization of assumptions about the model and data, 

selection and implementation of appropriate procedures of statistical inference, and ending 

with the verification of how the results are related to the medical problem, and therefore 

whether they can give us adequate answers to the posed questions. 

Medical data is often difficult to analyze and during the process of the statistical inference it is 

important to find a common ground for clinicians and statisticians. Moreover, it appears 

crucial to develop the awareness of how the assumptions about the selected model and about 

the data may affect the choice of the inference procedures, the subject of interest and the final 

results. Assumptions underlying many statistical methods are usually not fulfilled in clinical 

practice.  

A careful search for truth, memory of the methodological remarks of our masters, honesty, 

integrity and professionalism at every stage of statistical analysis, openness to other methods, 

departure from an automatic use of statistical packages, not yielding under the pressure 

of data manipulation - all of this will certainly lead to valuable results of research that will 

serve our health. 


