News

About the Institute

Mission & Authorities

Acts

History

For Media

Doctoral Studies

Academic degrees

Scientific activity

Institute offers

ICB

Publishing

Conference Centre

Library

Useful Links

Public procurement

Employees

Gallery

Projects
  • Main-Slider-PL-07
  • Main-Slider-PL-08
  • Main-Slider-PL-04
  • Main-Slider-PL-06
  • Main-Slider-PL-02
  • Main-Slider-PL-16
  • Main-Slider-PL-10
  • Main-Slider-PL-14
  • Main-Slider-PL-13
  • Main-Slider-PL-09
  • Main-Slider-PL-19
  • Main-Slider-PL-18
  • Main-Slider-PL-12
  • Main-Slider-PL-20
  • Main-Slider-PL-15
  • Main-Slider-PL-01
  • Main-Slider-PL-05
  • Main-Slider-PL-03
home 001 24px mail 001 24 bip text   

UMO-2011/03/D/ST6/03236_EN

 UMO-2011/03/D/ST6/03236

 

Head of the project: Norbert Żołek, PhD

 

The aim of the research related to the project is to develop methods and software for analyzing multiparameter probability distributions connected with distributions of times of flight of photons through given media. Estimation of the parameters of the distributions will allow for estimation of the optical properties of measured structures studied using near-infrared spectroscopy. Proper evaluation of absolute values of macroscopic optical properties and volume of penetration of structures of optically turbid medium is going to allow for wider usage of near-infrared spectroscopy measurements in medical diagnostics. Previous studies have demonstrated the possibility of broad use of non-invasive methods based on radiation of visible light and near-infrared for monitoring of cerebral oxygenation.

Unfortunately, difficulties in determining absolute values of the optical properties and volume of penetration of radiation in the measured structure prevented the wider use of these methods in routine clinical practice so far. Due to the high complexity of the propagation of light in tissue structures, complex theoretical models are needed to analyze the results of the measurements. One of the most accurate methods is method based on Monte Carlo simulations. Unfortunately, the method requires massive computing power to obtain statistically reliable results.

Technological advances, particularly the development of general-purpose graphics processing units (GPGPU) and software libraries (CUDA, OpenCL), allow to use these graphics cards power for parallel numerical computation of very high complexity and allows the use of Monte Carlo simulations of light transport in the tissues to evaluate its optical properties.

The project applicants are planning to develop methods of signal analysis and reconstruction of macroscopic optical properties (such as scattering and absorption coefficients and the anisotropy coefficient ) derived from measurements using near-infrared spectroscopy and the Monte Carlo method. The developed methods will be tested and verified on results of measurements on numerical and physical phantoms with optical properties similar to the optical properties of tissues.

MENU

Contact

Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences
 adres 002 16px

Ks. Trojdena 4 st.
02-109 Warsaw
POLAND

 telefon 001 16px (+48) 22 592 59 00
(+48) 22 659 91 43
faks 001 24px

(+48) 22 659 70 30

mail 003 16px This email address is being protected from spambots. You need JavaScript enabled to view it.
NIP:

 525-00-09-453

REGON: 000570832
lokalizacja 003 24px

MAP

Publications

Scientific Awards

  • Slider-Right-Midle-EN-01
  • Slider-Right-Midle-EN-02
  • Slider-Right-Midle-EN-03
  • Slider-Right-Midle-EN-04

 

mcb

 

 

bip

 

logo cnslab


Nałęcz Institute of Biocybernetics and Biomedical Engineering PAS, Ks. Trojdena 4 st., 02-109 Warsaw, POLAND
E-mail:This email address is being protected from spambots. You need JavaScript enabled to view it.; Phone: (+48) 22 592 59 00; Fax: (+48) 22 659 70 30
Copyright(c) 2016 IBBE PAS
All rights reserved